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Chapter 1. Introductory Comments

The study of radiation interchange between individual surface ele-
ments in a system is required in a variety of engineering disciplines
including applied optics, illumination engineering, and heat transfer.
Indeed, such studies have been conducted for many years as evidenced
by the publication dates of references 1 and 2. More recently the study
of radiant interchange has been given impetus by technological advances
that have resulted in systems where thermal radiation can be a very
significant factor. Some examples are satellite temperature control,
energy leakage into cryogenic vacuum systems, high-temperature phe-
nomena in hypersonic flight, and the heat transfer in nuclear propulsion
systems.

1.1 ENCLOSURE THEORY

In this volume the theory will be developed for computing thermal
radiation exchanges within enclosures. First it must be understood what
is meant by an enclosure. Any surface can be considered as completely
surrounded by an envelope of other solid surfaces or open areas. This
envelope is the enclosure for the surface; thus an enclosure accounts
for all directions surrounding the surface. By considering the radiation
going from the surface to all parts of the enclosure, and the radiation
arriving at the surface from all parts of the enclosure, it is assured that
all the radiative contributions are accounted for. In working a problem,
a convenient enclosure will usually be evident from the physical con-
figuration. An opening can be considered as a plane of zero reflectivity.
It will also act as a source of radiation when radiation is entering the
enclosure from the environment.

All the enclosures considered here will be subject to the assumption
that the medium in the space between the surfaces is perfectly trans-
parent and thus does not participate in the radiative interchange. For
an enclosure filled with a radiating material such as a gas containing
water vapor, carbon dioxide, or smoke, the theory will be treated in
volume III of this series.

Reference 3, which is volume I of this series, discusses in detail the
radiative properties of solid surfaces. It was demonstrated that for some
materials there are substantial variations of properties with wavelength,
surface temperature, and direction. For radiation computations within
enclosures, the geometric effects governing how much radiation from one
surface reaches another is a complication in addition to the variations

1




2 THERMAL RADIATION HEAT TRANSFER

of the surface properties. For simple geometries it may be possible to
account in detail for property variations without the problem becoming
unduly complex. As the geometry becomes more involved, it is often
necessary to invoke more idealizations of the surface properties in order
that the problem can be solved with reasonable effort.

The treatment presented here could begin with the most general
situation where properties vary with wavelength, temperature, and
direction, and where the radiation fluxes vary arbitrarily over the en-
closure surfaces. All other situations would then be simplified special
cases. However, this would entail the uninitiated reader plunging into
the most complex treatment, which would be very difficult to understand.
Hence the development presented here will begin with the most simple
situation; successive complexities will then be added to build more
comprehensive treatments.

1.1.1 ldeal Enclosures

The greatest simplification is to assume that all the enclosure surfaces
are black. In this instance there is no reflected radiation to be accounted
for. Also, all the emitted energy is diffuse; that is, the intensity leaving
a given isothermal surface is independent of direction. The exchange
theory for a black enclosure is presented in chapter 2. The heat balances
involve the enclosure geometry, which governs how much radiation
leaving a surface will reach another surface. The geometric effects are
expressed in terms of diffuse configuration factors; these factors are the
fractions of radiation leaving a surface that reach another surface. The
factors are derived on the basis that the directional distribution of radia-
tion leaving a surface is diffuse and uniformly distributed, and these
restrictions should be kept in mind when the factors are applied in
nonblack enclosures.

The computation of configuration factors involves integration over
the solid angles by which the surfaces can view each other. Since these
integrations are often tedious, it is desirable to use certain useful rela-
tions that exist between configuration factors. By using these relations,
the desired factor can often be obtained from factors that are already
known, and the integration will not have to be performed. These rela-
tions, along with various shortcut methods that can be used to obtain
configuration factors, are presented in detail in chapter 2. An appendix
is also provided giving references where configuration factors can be
found for approximately 150 different geometrical configurations.

After analyzing the black enclosure, the next step of complexity is
an enclosure with gray surfaces that emit and reflect diffusely. Tt is also
assumed that both the emitted and reflected energies are uniform over
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each surface. For these conditions the diffuse configuration factors found
for black surfaces still apply for the radiation leaving a surface. For gray
surfaces, reflections between surfaces must be accounted for. This is
done in chapter 3 by using a method developed by Poljak.

Another type of ideal surface is a perfect mirror reflector. The emission
from this type of surface is approximated as being diffuse; hence, the
emitted energy is treated by using the diffuse configuration factors. The
reflected energy, however, is followed within the enclosure by using the
characteristics of a mirror where the angle of reflection is equal in mag-
nitude to the angle of incidence. The method of tracing the reflected
radiation paths and deriving the necessary heat balances is treated in
chapter 4.

1.1.2 Nonideal Enclosures

In some instances the black or diffuse-gray approximations are inade-
quate and directional and/or spectral effects must be considered. The
necessity of treating spectral effects was noticed quite early in the field
of radiative transfer. In the remarkable paper (ref. 4) published in 1800
by Sir William Herschel entitled “Investigation of the Powers of the
Prismatic Colours to Heat and Illuminate Objects; with Remarks, that
prove the Different Refrangibility of Radiant Heat to which is added,
an Inquiry into the Method of Viewing the Sun Advantageously, with
Telescopes of large Apertures and High Magnifying Powers.” appears
the following statement: “In a variety of experiments I have occasionally
made, relating to the method of viewing the sun, with large telescopes,
to the best advantage, I used various combinations of differently coloured
darkening glasses. What appeared remarkable was, that when I used
some of them, I felt a sensation of heat, though I had but little light;
while others gave me much light, with scarce any sensation of heat.
Now, as in these different combinations, the suns image was also dif-
ferently coloured, it occurred to me, that the prismatic rays might have
the power of heating bodies very unequally distributed among
them. . . .” This paper was the first in which what is now called the
infrared region of the spectrum was defined and the energy radiated as
“heat” shown to be of different wavelengths than those for “light.”

The quotation shows an awareness that in some instances spectral
effects must be included in the radiative analysis. The performance of
spectrally selective surfaces such as are used in satellite temperature
control and for solar collector surfaces can be understood only by con-
sidering the wavelength variations of the surface properties.

A second nonideal surface property is that of strong directional
dependence. In volume I of this work (ref. 3), a number of directionally
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dependent surface properties were examined, and some were shown to
differ considerably from the diffuse or specular approximations. A good
example is the lunar surface, which has a distribution of reflected energy
strongly peaked back into the direction of incident radiation. This is in
a sense the opposite of a specular reflector and can certainly not be con-
sidered diffuse.

Methods for treating surfaces that are nonideal in either spectral or
directional properties, or both, are examined in chapters 5 and 6. Chapter
5 continues the enclosure theory development of the previous chapters.
Chapter 6 deals with an alternate approach —the Monte Carlo method.
This is a general technique that involves following “bundles’ of radiant
energy along their paths within an enclosure. It can be applied to all
types of radiation problems but is usually too detailed and costly in terms
of computer time for use in simple situations. When directional and
spectral effects must be considered, the Monte Carlo method is very
valuable.

1.2 ENERGY TRANSFER BY COMBINED MODES

Chapter 7 deals with problems where conduction and/or convection
is combined with radiative heat transfer. Since only opaque surfaces are
being dealt with here, the radiative interaction with a body is considered
to occur only at the surface. Thus the radiation serves only as a boundary
condition with regard to the conduction process within a body. This is
analogous to the convective boundary condition at a surface. When a
body is undergoing a transient temperature change, the radiative terms
are applied at each instant when solving the energy balances governing
the temperature distribution within the body.

The heat conduction process is governed by local derivatives of the
first power of the temperature. The convection process depends on local
differences between the first power of the fluid and surface temperatures.
Radiative exchange, however, depends approximately on differences of
fourth powers of the surface temperatures and also depends on the
integral of the radiation incident from all the surroundings of the surface.
As a result, the energy balance for a combined convection, conduction,
and radiation problem can result in an integrodifferential equation.
There are few standard mathematical methods for attacking these
equations, and few closed-form analytical solutions are available. Nu-
merical methods are usually employed for multimode problems.

1.3 NOTATION

The notation employed here is the same as in volume I of this pub-

i e e amme e B s mem e
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lication (ref. 3) and is now briefly reviewed. A prime denotes a direc-
tional quantity, while a A subscript specifies that the quantity is spectral;
for example, € is the directional spectral emissivity. Certain quantities
such as bidirectional reflectivities can depend on two directions, that is,
the directions of the incoming and outgeing radiation. These bidirec-
tional quantities are denoted by a double prime. A hemispherical quan-
tity will not have a prime, and a total quantity will not have a A subscript;
thus € is the hemispherical total emissivity. In addition a notation such
as €,(\, B, 0, T) can be used to emphasize the functional dependencies or
to state more specifically at what wavelength, angle, and surface tem-
perature the quantity is being evaluated.

Additional notation is needed for the energy rate Q for a finite area in
order to keep consistent mathematical forms for energy balances. The
quantity d?Q] is directional-spectral, and the second derivative is used
to indicate that the energy is of differential order in both wavelength and
solid angle. The quantities dQ’ and dQ\ are of differential order with
respect to solid angle and wavelength, respectively. If a differential area
is involved, the order of the derivative is correspondingly increased.

1.4 CONCLUDING REMARKS

As mentioned previously, certain restrictions to ideal surfaces and
nonparticipating media are present in each of the chapters that follow.
In addition, some phenomena that are rather more specialized than is
the intent of this work can be of importance in certain situations. For
example, effects of polarization can lead to errors in energy transfer cal-
culations if ignored under special conditions of geometry (ref. 5). Inter-
ference effects (ref. 6), chemical and photochemical phenomena (refs.
7 to 10), and perhaps others can in some situations be the dominant
mechanisms governing the radiative transfer. The reader can only be
referred to the specialized literature and warned to watch for such cases.

REFERENCES

1. CHARLES, M.: Les Manuscripts de Leonard de Vinci, Manuscripts C, E, and K de la
Bibliotheque de I'Institute Publiés en Facsimilés Phototypiques, Ravisson-Mollien,
Paris, 1888. (Referenced in Middleton, W. E. Knowles: Note on the Invention of
Photometry. Am. J. Phys., vol. 31, no. 3, Mar. 1963, pp. 177-181.)

2. FRANCOIS D’AGUILLON, S. ]J.: Opticorum Libri Sex. Antwerp, 1613. {(Referenced in
Middleton, W. E. Knowles: Note on the Invention of Photometry. Am. J. Phys.,
vol. 31, no. 3, Mar. 1963, pp. 177-181.)

3. SiEGEL., ROBERT; aND HOWELL, JOHN R.: Thermal Radiation Heat Transfer. I-The
Blackbody, Electromagnetic Theory, and Material Properties. NASA SP-164, 1968.

4. HERSCHEL, WILLIAM: Investigation of the Powers of the Prismatic Colours to Heat
and Illuminate Objects. Trans. Roy. Soc. (London), vol. 90, pt. 11, 1800, pp. 255—-283.




e i i A - i - e

6 THERMAL RADIATION HEAT TRANSFER

5. Epwarps, D. K.; AND ToBIN, R. D.: Effect of Polarization on Radiant Heat Transfer
through Long Passages. J. Heat Transfer, vol. 89, no. 2, May 1967, pp. 132-138.

6. CRAVALHO, E. G.; TIEN, C. L.; AND CAREN, R. P.: Effect of Small Spacings on Radia-
tive Transfer between two Dielectrics. J. Heat Transfer, vol. 89, no. 4, Nov. 1967,
pp- 351-338.

7. GARLICK, G. F. J.: Luminescence in Solids. Sci. Prog., vol. 52, Jan. 1964, pp. 3-25.

8. PRINGSHEIM, PETER: Fluorescence and Phosphorescence. Interscience Publ, 1949.

9. Cumikg, DANIEL (G. F. J. GARLICK, TRANS.): Luminescence in Crystals. John Wiley &
Sons, Inc., 1963.

10. BoweN, E. J.; AND GARLICK, G. F. J.: Luminescence. Int. Sci. Tech., no. 56, Aug. 1966,
pp. 18-29.




Chapter 2. Exchange of Radiant Energy
Between Black Isothermal Surfaces

2.1 INTRODUCTION

This chapter begins the discussion of radiation exchange between
surfaces and is concerned with the special situation where all the sur-
faces involved are black. Black surfaces are chosen to deal with first
since they are perfect absorbers, and the energy exchange process is
thus simplified because there is no reflected energy to be considered.
Also, all black surfaces emit in a perfectly diffuse fashion where the
radiation intensity leaving a surface is independent of the direction of
emission. This simplifies the computation of how much of this radiation
will reach another surface.

The fraction of the radiation leaving one surface that reaches another
surface is defined as the geometric configuration factor between the two
surfaces because it depends on the geometric orientation of the surfaces
with respect to each other. The geometric dependence is discussed here
for black surfaces, but the results have a wider generality as they will
apply for any uniform diffuse radiation leaving a surface. This geometric
dependence leads to some algebraic relations between the factors, and
these relations are demonstrated in this chapter for various surface
configurations. In table A-I of appendix A, a tabulation is provided of
references where known configuration factors can be found in the litera-
ture. Applications of these factors to example problems of engineering
interest are then examined for radiative energy exchange between two
surfaces.

After the relations for exchange between two surfaces have been
developed, the relations can be applied to any number of surfaces
arranged to form an enclosure of black surfaces each at a different
temperature. The general set of equations governing the exchange within
such an enclosure is developed, and some illustrative examples are
provided.

In chapter 3 the concepts developed in this chapter are extended for
use in systems with diffuse-gray surfaces, and succeeding chapters
introduce more and more complex systems. The concepts of the present
chapter are discussed at some length because they are fundamental to
the succeeding material dealing with less ideal surfaces.
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2.2 SYMBOLS
A area
e emissive power
f function defined by eq. (2—-49b)
F configuration factor
i intensity
I,m,n direction cosines, eq. (2—49a)
N number of surfaces in an enclosure
P,Q,R functions in contour integration used in section 2.5.3.2
Q energy per unit time
r radius
S distance between two differential elements
T temperature
U number of unknowns in equations describing an N-sided
enclosure
X, ¥, 2 Cartesian coordinate positions
a,y,8 angles in direction cosines
B angle from normal
A wavelength
o Stefan-Boltzmann constant
® solid angle
Subsecripts:
b blackbody
dl, d2 evaluated at differential element dl or d2
i inner
J. k j® or k™ surface
N N surface
ring ring area
5 Sun
strip elemental strip
A wavelength dependent
1,2 at area l or 2
Superscript:

denotes quantity is in one direction

2.3 RADIATIVE EXCHANGE BETWEEN TWO DIFFERENTIAL AREA ELEMENTS

The relations describing radiative exchange between differential ele-
ments are considered first as they will be used in the succeeding sections
to derive the relations for exchange between areas of finite size. Consider
two differential black area elements as shown in figure 2-1. The elements
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B1 o
Normal to dA; >

FIGURE 2-1. —Radiative interchange between two black differential area elements.

dA, and dA, are isothermal at temperatures T, and T2, respectively, are
arbitrarily oriented, and have their normals at angles 8, and 8 to the line
of length S joining them.

Using the notation of reference 1 (which will be referred to from this
point as Vol. I), the total energy per unit time leaving d4, and incident
upon dA4, is

d?Qiy a2 =iy,1 dAy cos By dan 2-1

where dw, is the solid angle subtended by d4: when viewed from dA4..
Equation (2-1) follows directly from the definition of i; |, the total black-
body intensity of surface 1, as the total energy emitted by surface 1 per
unit time, per unit of area d4, projected normal to S, and per unit of
solid angle. As in Vol. I, the prime indicates a quantity applied in a
single direction. The quantity @?Q’ is a second differential to denote the
dependence upon two differential quantities, d4, and den.

Equation (2-1) can also be written for radiation at only one wavelength

d3Q;, g1-a2= trs, 1 (N)dX dA; cos B1 dan

The total radiation quantities are then found by integrating over all
wavelengths
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P~ [ B o= s cos Budn [ 5, (M) A

For a black surface i;,(A) does not depend on direction; hence, all the
geometric factors can be removed from under the integral sign, and the
integration over wavelength is independent of any geometrical consid-
erations. Thus the geometric configuration factor results that follow apply
for both spectral and total quantities. For simplicity in not having to
carry the \ notation, the discussion will be carried out for total quantities.

The solid angle dw, is related to the projected area of d4. and the
distance between the differential elements by the relation

- dA; cos B

d(zh 52

(2-2)

Substituting this relation into equation (2—1) gives the following equation
for the total energy per unit time leaving dA4, that is incident upon d4,:

420l = iy, dA, cos szl dA» cos B: 2-3)

An analogous derivation for the radiation leaving dA. that arrives at
dA, results in

iy.2 dA2 cos B2 dA, cos By
Q- = Sz (2-4)

For later use, d2Q’ has been defined in equations (2-3) and (2—4) as
the energy emitted by one element that is incident upon the second ele-
ment. For the special case of a black receiving element, all incident
energy is absorbed so that equations (2-3) and (2—4) in this case give
the energy from one element that is absorbed by the second. As will be
seen, the more general definition of d%Q’ allows the configuration factors
derived here for black surfaces to be used in certain other cases. These
will be examined at length in chapters 3 and 4.

The net energy per unit time d2Q}, .., exchanged from black element

dA, to dA; along path S is then the difference of d*Q},_4 and d?Q,_,,,
or from equations (2-3) and (2—4)

PQirme = P Qs = Qi = (i3, — i3, ) LB g,
2-5)

v e e = e v g e s e
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From equation (2-21) of Vol. I, the blackbody total intensity is related
to the blackbody total hemispherical emissive power by

., T+
ij=2=2— (2-6)

so that equation (2-5) can be written as
PQuma=o(Tt—T) L2 14, a4, @-7)

EXAMPLE 2-1: The Sun emits energy at a rate that can be approxi-
mated by that of a blackbody at temperature 10400° R. A blackbody
area element in orbit around the Sun at the mean radius of the Earth’s
orbit (92.9 X 10 mi) is oriented normal to the line connecting the centers
of the area element and Sun. If the Sun’s radius is 4.32 X 10% miles, what
energy flux is incident upon the element?

To the element in orbit, the Sun appears as an isothermal disk element
of area

dA, = mwri=m(4.32 X 10%)2=15.86 X 10!! mi?

From equation (2-3), the incident energy flux on the element in orbit is

d’QIu-az=i. dd. < B cos B _oT}dA,
M_z .1 1 Sz Py 52
_ 0.173 X 10-%(1.04 X 104y 5.86 X 101! _ .
= p= 92.9 % 1098 437 Btu/(hr)(ft2)

This value is consistent with the range of measured values of the
mean solar constant, 420 to 454 Btu/(hr)(ft?).

EXAMPLE 2-2: As shown in figure 2-2, a black square of side 0.1 inch
is at temperature 1500° F and is near a tube 0.1 inch in diameter. The
opening of the tube acts as a black surface, and the tube is at 800° F.
What is the net radiation exchange along the connecting path S between
the square and the tube opening?

From equation (2-7)

dQpua=0c(T{—T%) 9_5_53;';2&& ddidds

The value of cos B, is found from the known sides of the right triangle
dAy;—0—dA, as

323-003 O-69—2
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da, (0.1in2
T, 80°F
By 20°

mlke!

dAl Tl - 150)" F

Z;_/ 0o
/L"' 3in.

/

FIGURE 2-2.—Radiative exchange between square element and circular tube opehing.

cos B =2/[(3)2+ (2)2]v2=2/(13)"2

The other factors in the energy exchange equation are given, and
substituting them gives

cos 20°
(13/144)

dQiyeecr = 0.173 X 10-°[(1960) ¢ — (1260)*] (13?):/2 ™

(e

=1.48 X 10+ Btu/hr

2.4 RADIATIVE GEOMETRIC CONFIGURATION FACTORS AND ENERGY
EXCHANGE BETWEEN TWO SURFACES

One of the chief mathematical complexities in treating radiative
transfer between surfaces is accounting for the geometric relations
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involved in how the surfaces view each other. These effects result
mathematically in integrations of the radiative interchange over the
finite areas involved in the exchange process. It would be helpful to
have, as much as possible, handbook results to account for these geo-
metric relations for often-encountered geometries. In this way repetitions
of the tedious integrations could be avoided.

In this section, a method of accounting for the geometry is introduced
in the form of a quantity called the geometric configuration factor. Such
factors allow computation of radiative transfer in many systems by
referring to formulas or tabulated data which have been been previously
obtained for the geometric relations between various surfaces. This
removes what is often the most time-consuming and error-prone portion
of the analysis.

2.4.1 Configuration Factor for Energy Exchange Between Differential
Elements

The fraction of energy leaving black surface element dd, that arrives
at black element dA; is defined as the geometric configuration factor
dF 41-42. (Either the total or spectral energy could be considered as
discussed with regard to equation (2-1), and the same results for dF
would be obtained. The total energy is used here for convenience in not
carrying the A notation.) Using equations (2-3) and (2-6), the previous

definition gives
. CO8 B cos B
d’Q,’,l_,ﬂ_aT‘ v dA,dA,

Fa-a="pr i, ol dA,

_cos [j;btzzos B2 dA, 2-8)

where oT4dA, is the total energy leaving dA4; within the entire hemi-
spherical solid angle over d4;. Equation (2-8) shows that dF 41-¢2 depends
only upon the size of d4; and its orientation with respect to dA,. By
substituting equation (2-2), equation (2-8) can also be written in the form

cos 3 duw
T

dF -2 = (2-9)

Consequently, all elements dA: have the same configuration factor if
they subtend the same solid angle dw, when viewed from dA, and are
positioned along a path at angle 8: with respect to the normal of dA,.

The factor dF 41—« has a variety of names, being called the view, angle,
shape, interchange, exchange, or configuration factor. The last seems
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most specific, implying a dependence upon both orientation and shape,
the latter variable entering when finite areas are involved.

The notation used here for configuration factors is based on subscript
designation for the types of areas involved in the energy exchange and
a derivative notation consistent with the mathematical meaning of the
configuration factor. For the subscript notation, dl, d2, and so forth
will indicate differential area elements, while 1, 2, and so forth will
indicate areas of finite size. Thus dFa-¢ indicates a factor between
two differential elements, as in equation (2-8). The notation dFi-a
indicates a configuration factor from finite area 4, to differential area dA,.

The derivative notation dF indicates that the configuration factor is
for energy transfer to a differential element, as in equation (2-8). This
is redundant with the subscript notation, but keeps the mathematical
form of equations (such as eq. (2-8)) consistent in that a differential
quantity appears on both sides (i.e., the expression for dF contains a
differential area). A configuration factor F denotes a factor to a finite
area. Thus Fa -z is the configuration factor from differential element
dA, to finite area As.

24.1.1 Reciprocity for differential element configuration factors.—
By a derivation similar to that used in obtaining equation (2-8), the
configuration factor needed for calculating energy exchange from
element dA; to d4, is

dpa_dl=w dA, (2_10)

wS?

Dividing equation (2-8) by equation (2-10) gives the general reci-
procity relation

dF i paddy = dF s avdAe =3B gy a4, (2-11)

wS?

Finally, equation (2-7) for energy exchange along the path between
two black elements can be written by using equation (2-11): the result is

d?Qn = =0 (T4 —T$)dF a1-wdAd1 = (T} — T#)dF sp-ardA:  (2-12)

2.4.1.2 Some sample configuration factors between differential ele-
ments. —To this point, a series of algebraic manipulations has allowed
a reduction of the equation for the net radiative transfer along the path
between two black isothermal area elements to the apparently simple
form of equation (2-12). This was done by introduction of the con-
figuration factor dF which encompasses the geometric complexities.
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The derivation of configuration factors will now be illustrated by con-
sidering some sample cases.

ExaMPLE 2-3: The two elemental areas shown in figure 2-3 are
located on strips that have parallel generating lines. Derive an expres-
sion for the configuration factor between d4; and dA..

FIGURE 2-3. —Geometry for configuration factor between elements on strips formed by
paralle] generating lines.

The distance S can be expressed as
Sz = 12 + xz
and cos B, is then

lcosgp_ lcose
cos i =—3 =Tt "

The solid angle subtended by d4,, when viewed from dA,, is
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projected area of d4,)
Sz

d(m =(

- (projected width of dA;)(projected length of dd,)
S?

_u dp)(dx cos ) _ ! dpdx I
53 S S

Substituting into equation (2-9) gives

dF _cosPiden _ lcosg 1 {2 deodx
Q1-da2= T —(lz+xz)x/zﬂ-([z+xz)m

_ {3 cos p dpdx
T om(lE+a2p
which is the desired configuration factor between dA4; and dA,.

EXAMPLE 2-4: Find the configuration factor between an elemental
area and an infinitely long strip of differential width oriented as in

dAstrip, 1

FIGURE 2-4. —Geometry for configuration factor between elemental area and infinitely
long strip of differential width; area and strip are on parallel generating lines.
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figure 2-4, so that the generating lines of d4; and d4urip, 2 are parallel.
Example 2-3 gave the configuration factor between differential ele-
ment d4, and area element dA4, of length dx as

13 cos ¢ dpdx

Far-a =

To find the factor when d4, becomes an infinite strip as in figure 2—4,
integrate over all x to obtain

dFd!—nrlp, 2=

I3 cosqod«!f“ dx
™ —a B+ 22P

_PBecosedyp x 1 T
= [212(12+x2)+21= tan '(1)]-,

_cospdp_1 .

5 =3 d(sin @)
where the angle ¢ is in the y—z plane. This useful configuration factor
relation will be used in later examples.

Figure 2—4 also shows that, if element d4, lies on an infinite strip
dAurip,1 with elements parallel to dAdurip,2, the configuration factor

1
dF as-urip, 2 = 3 d(sin ¢)

will be valid for d4, regardless of where d4, lies on dA4urip,1. Then,
since any element d4, on dAurip,1 has the same fraction of its energy
reaching dAurip, 2, it follows that the fraction of energy from the entire
dAyrip, 1 that reaches dAurip, 2 is the same as the fraction for each ele-
ment d4;. Thus, the configuration factor between two infinitely long
strips of differential width and having parallel generating lines must
also be the same as for element d4; to dAsurip, 2, or 3d(sin ¢). The angle
¢ is always in a plane normal to the generating lines of both strips.

ExaAMPLE 2-5: Consider an infinitely long wedge-shaped groove as
shown in cross section in figure 2-5. Determine the configuration factor
between the differential strips dx and df in terms of x, £, and a.

As discussed in example 2—4, the configuration factor is given by

dF 4z_ae=1%d(sin¢)=} cos ¢ dp

From the construction in figure 2-5(b)
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&

(b

(a) Wedge-shaped groove geometry.
(b) Auxiliary construction.

FIGURE 2-5. — Configuration factor between two strips on sides of wedge groove.

in &
cos«p=§—%n—

The quantity dy is the angle subtended by the projection of d¢ normal
to L, that is,

dxp=d§ cos (at+¢) dfxsina
L L L

From the law of cosines
Li=x2+£—2xf cos a

Then
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1n2
dFu_dg=%cos<p d‘p=% {g_sil;_ﬁ d¢

1 x€ sin® a de
2 (x2+ £2—2x£ cos a)3?

24.2 Configuration Factor Between a Differential Element and a
Finite Area

Consider now an isothermal black element d4, at temperature T\
exchanging energy with a surface of finite area A that is isothermal at
temperature T: as shown in figure 2-6. The relations developed for
exchange between differential elements must be extended to permit
A> to be finite. Figure 26 shows (compare the solid and dashed cases)
that the angle B; will be different for different positions on 4; and that
B and S will also vary as different differential elements on A are viewed
from dA,.

There are two configuration factors to be considered. The factor
Fai_z is from the differential area d4, to the finite area Az, and dFz_g
is from A to dA,. Each of these will be considered by using the definition
of configuration factor as the fraction of energy leaving one surface that

dA
/ 2

FIGURE 2-6. —Radiant interchange between differential element and finite area.
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reaches the second surface. To derive Fg;-2, note that the total energy
radiated from the black surface element dd, is dQ,=oT}dA,. The
energy reaching d4; located on 4. is

d?Qly_az=cT? cos B cos B dAy dA,

wS?

Then integrating over A; to obtain the energy reaching all of 4., and
dividing by the total energy leaving dd4, result in

] Oz J; o cos B cos B2 d4, A,

S

A
Fdl-z - d01 O’T’ dA1

=L cos é;scios B: dd, (2-13)

where the integration limits on A; extend over only the portion that can
be viewed by d4,. From equation (2-8) the quantity inside the integral
of equation (2-13) is dFai-a, so that Fa—2 can also be written as

Fa-2=| dFai-a= (2-14)

As

This merely expresses the fact that the fraction of the energy reaching
A; is the sum of the fractions that reach all of the parts of 4.

Now consider the configuration factor from the finite area Az to the
elemental area d4,. The energy reaching an elemental area d4, from a
finite area A, is, by integrating equation (2—4) over A,

dQ2_dl=d,41J’ i; 2 w M2=le O'Tg cOS8 B] coSs 32 dA_Z
Az

Az Ne wS?
(2-15)
The total hemispherical energy leaving A: is
Q.= f oT4dA: (2-16)
Ag

The configuration factor dF:-q4 is then the ratio of dQz-a: to Q: or
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w52

J’ O’T; dAz
As

dAlf T} cos 1 cos s dd,
Az

dF; g =

=%L cos B cos B a4, (2-17)

nS?

The last integral on the right was obtained subject to the imposed
condition that A, is isothermal. From equation (2-8) the quantity under
the integral in equation (2-17) is dFai-a» so the following alternate
form is obtained:

&= f dF a1az (2-18)
2 Asg

2.4.2.1 Reciprocity for configuration factor between differential and
finite areas.—By use of equation (2-14) the factor dF;-4:, as given
by equation (2-18), can be written as

dA
dFs_a =7;1 Fai»

or
Az sz_m'-:dAdex—z (2“'19)

which is a useful reciprocity relation.

2.4.2.2 Radiation interchange between differential and finite areas.—
The energy radiated from dA, that reaches A is from the definition of
the configuration factor

dQu-2=0cTidA, Fa1-»
Similarly, that radiated by 4. and reaching dA, is
dQs-a1=0T$A: dF2_a
The net exchange from d4, to 4 is
dQ am =dQa-2— dQ:z-a1

= O'T: dAl Fdx-z - O'TgAz sz-dx (2—20)
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By use of the reciprocity relation in equation (2-19), the exchange
can be expressed in the alternate forms

dQam: = U'(Tf"Ta) dA, Fa1-2 (2-21a)

dQ ar = (T4 —T4) Az dF 2 -ar (2-21b)

2.42.3 Some sample configuration factors involving a differential and a
finite area.—Certain geometries have configuration factors that can be
represented by a simple closed-form algebraic solution, while others
require numerical integration of equation (2-13). Configuration factors
can be tabulated for common geometries so that they need not be com-
puted each time they are used. A list of referénces for available con-
figuration factors is given in table I of appendix A.

Two geometries possessing closed-form configuration factors are
given in the next examples which also serve to illustrate the method of
obtaining these factors.

EXAMPLE 2-6: An elemental area dA, is oriented perpendicular to
a circular disk of finite area 4; and outer radius r as shown in figure
2-7(a). Find an equation describing the configuration factor Fa1-2 for
this system in terms of the appropriate parameters h, I, and r.

The first step in this problem is to find expressions for the quantities
inside the integral of equation (2-13) in terms of known quantities so
that the integration can be carried out. The elemental area d4; is known
in terms of the local radius on the disk and the angle 8 as

dA; = p dpdf

Because the integral in equation (2-13) must be carried out over all
p and 8, the other quantities in the integral must be put in terms of
these two variables; this is done by using auxiliary constructions.
Figure 2-7(b) is drawn to evaluate cos B, and cos $3:, which are seen to be

[+p cos b
cos 31 = 5
and
cos ﬁz=%

Figure 2-7(c) allows evaluation of the remaining unknown, S, as

St=ht+ Bz
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where B® can be evaluated by using the geometric law of cosines on
triangle a0b. This gives

Br=1{2+p2—2Ip cos (180—6)=1{2+p?+2lp cos 8

Substituting these relations into equation (2-13) results in

_ [ cos Bi cos B [ h(l+pcos®)
Fdx-z—J;’ a5 dA-z—LI B R p dpdb

L O p(l+p cos 8)
w p=0 Jomo (h2+lz+p2+2p1 cos 0)? dédp

This integration is carried out using the symmetry of the configuration
and is nondimensionalized to give, after considerable manipulation,

_2_h_ L p(l+p cos 8)
Fa-2=7 J’,-o L-o (R + p*+ 12+ 2pl cos 8)* dédp

_2H (* [T E(1+£ cos 8)
T or J;.o fM (H2+ £+ 1+2£ cos 0)2d0d£

=i_i{ H*+R*+1 _1}
2 |[(H?+R*+1)*—4R?]42

The nondimensionalization has been done by dividing numerator and
denominator by !4 and by letting H=A/L, R=r/l, and £=p/l. To find
the net exchange of energy between two surfaces in the configuration
of figure 2-7, Fai-2 is evaluated by the previous expression, and dQa =2
is evaluated by using equation (2-21a).

EXAMPLE 2-7: An infinitely long two-dimensional wedge cavity has
an opening angle a. Derive an expression for the configuration factor
from one wall of the wedge to a strip element of width dx on the other
wall at a distance x from the wedge vertex as shown in figure 2-8(a).
(Such configurations approximate the geometries of long fins and ribs
used in space radiators.)

From example problem 24, the configuration factor between two
infinitely long strip elements having parallel generating lines is

dF 4z -a¢ =% d(sin @)

where ¢ is in a plane containing the normals of both strips. Note that
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¢I

M —

-

(a) Wedge cavity geometry.
(b) Auxiliary construction to determine sin ¢’

FIGURE 2-8. ~Configuration factor between one wall and strip on other wall of infinitely
long wedge cavity.

¢ is measured clockwise from the normal of dx; equation (2-14) then
gives

1 0 o
Far = dFd.r—d£=J; ) mi‘d(sincp)-f-j; 31 d(sing)

£=0
=sif1£° +sin<p ¢
2 (pmemiz 2 =0
=1, sing’
2 2

The function sin ¢’ can be found by the auxiliary construction of figure
2-8(b) to be
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l cosa—x
x2+ [2—2xl cos a)'/?

. ,_B
sm«p=6=(

Then

1 lcosa—x
Fd""_§+ 2(x% + 2 —2xl cos a)V?

However, the problem statement asked for dFi_az. Using the reciprocal
relation of equation (2-19) gives

x
cos a—7
l

_dx — 2.l L
dFi4:=7 Fagy=dx 21t 3@+ F— 2+l cos )2

By letting X = x/1, this can be placed in dimensionless form

1 cos a—X
dFl'dx—dX[§+2(X’+l—2X cos a)‘/’]

The only variables are the opening angle of the wedge and the dimen-
sionless position from the vertex.

2.4.3 Configuration Factor for Two Finite Areas

Consider the configuration factor for radiation emitted from an
isothermal surface 4; shown in figure 2-9 and reaching A4;. By defini-
tion, F,_: is the fraction of the energy leaving A4, that arrives at A;. The
total energy leaving the black surface 4, is aTid, since 4, is isothermal
at T,. The radiation leaving an element d4, that reaches d4: was given
previously by

oT? cos B;Sczos B dd,dds

If this is integrated over both 4, and A2, then the result will be the energy
leaving A4, that reaches A.. The configuration factor is then found as

f j‘ aT* cos B cos B2 dAadA,
4y J4,

752
oTiA,

F, 2=
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Normal to dAy
|

Normal to dA;—

FIGURE 2-9. — Geometry for energy exchange between finite areas.

78?2

Fie=7 L L o3 81 €03 B ;4. dd, 2-22)
1 2

This can be written in terms of the configuration factors involving
differential areas as

1 1
F1—2=A—1L1 Lz dFdl—dszl=A—1[A1Fdl-2 dA, (2-23)

In a similar manner to the derivation of equation (2—-22), the configuration
factor from A; to 4, is found to be

cos B cos B,
f J; . 57 —————dAd,d4, (2-29)

2.4.3.1 Reciprocity for configuration factor between finite areas.— The

double integrals in equations (2-22) and (2-24) are identical. Hence,
the reciprocity relation results

323-003 O-69—3
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A|F1—2=A2F2—1 (2'25)

Further interrelations between configuration factors can be found
by using equation (2-23) in conjunction with the reciprocity relations
of equations (2-25) and (2-19), that is,

A

AN 1 1
F2—|=‘—F|-2=(‘—l)— Fdl-ZdAl‘—_—j dFZ-dIA2=j dF2_a
A2 Ay Az A, Ay

Az Al
(2-26)

2432 Radiation exchange between finite areas.—The energy radiated
from A, that reaches 4; is from the definition of the configuration factor

Qi-2=0oTiA\F 12
Similarly, that radiated from 4. which reaches 4, is
Q:-1=0TiA:F -,
The net exchange from A4, to Az is
1=2= Q1-2 — Q21 = T4 F 12— oTiAF 2 (2-27)
By use of equation (2-25) this can be written in the two forms
Qr122=0(Tt—THAF 1 (2-28a)
Or1a2=0(T{— T A2F2 (2-28b)

ExaMPLE 2-8: Two isothermal plates of the same finite width and of
infinite length are joined along one edge at angle o as shown in figure 2-8.
Using the same nondimensional parameters as in example 2-7, derive
the configuration factor between the plates.

Example 2-7 gives the configuration factor between one plate and
an infinite strip on the other plate as

[1 cos a—7 }
dFi-az= ﬂ+2(x2+l’—2xl cos )2 dx

Substituting into equation (2-26) gives
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l‘
Firp= J’ dFi_qz=
=0 0

X
cos a—-l-

b e e et e e it ot b e
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§+2(x2+lz—2xl cos a)l/?

where, for convenience in labeling, the width of the side in figure 2-8
having element dx is specified as {*. Using the dimensionless variable
X=x/! and the fact that {*=[, this becomes

Carrying out the integration yields

cos a—X ]

11
FH.—J; [§+2(X2+1—2X cos a)l/?

Ft—r=1—<

1—cos a)"z _ a

=]—sin<

2

For the present case where the two plate widths are equal, the only
parameter is the angle a. Also, because the areas of the two sides are
equal, the reciprocity relation (eq. (2-25)) gives, as expected from

symmetry,

Frp=Fr

TaBLE 2-1. ~ SUMMARY OF CONFIGURATION FACTOR AND ENERGY EXCHANGE RELATIONS

Geometry Energy exchange Configuration factor Reciprocity
Elemental dQilaLg dF 1-an d4\dF a1-a
area to
elemental | =g (T*—T4)d4\dF g1 =Cospicosfs ;. =dA:dFa-u
area b wSs?
Elemental dQu =2 Fatoe— d Fa-2
area to - cos B (;os Bz s =AsdF;_q
finite area| =0 (T{—T3d4d, Fa-1 s S
Finite area Qia2 Fig AFy_a=AsF2_,
to finite
area =g (T{— TP A:F 12 -'Lf J-
AvJatay
cos B cos
,;. ) dds dA,
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244 Summary of Configuration Factor and Energy Exchange Relations

In table 2-I, there are summarized the energy exchange equations,
integral definitions of the configuration factors, and the configuration
factor reciprocity relations.

2.5. METHODS FOR EVALUATING CONFIGURATION FACTORS
2.5.1 Configuration Factor Algebra for Pairs of Surfaces

Because of the difficulty involved in directly computing configuration
factors from the integral definitions in table 2-I for many geometries,
it is desirable to utilize shortcut methods whenever possible. Such short-
cuts can be obtained by using two concepts that have been developed in
preceding sections: (1) the definition of configuration factor in terms of
fractional intercepted energy and (2) the reciprocal relations. This section
will show how these two concepts can be used to derive configuration
factors for certain geometries from known configuration factors of other
geometries. The interrelation between configuration facters is termed
“configuration-factor algebra.”

Consider an arbitrary isothermal black area 4, in figure 2-10 ex-

FIGURE 2-10. —Energy exchange between finite areas with one area subdivided.
Fia+Fi=F..
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changing energy with a second area A.. The configuration factor Fy_.
is the fraction of the total energy emitted by A, that is incident upon
Az. If A, is divided into two parts, A; and A4, the fraction of the total
energy leaving 4, that is incident on 4; and the fraction incident on A4
must total to F;_;. As a consequence, the following can be written:

Filaa=Fi_geag=Fi3+Fi.s (2-29)

Suppose then that F,_, and F;_, are known, but configuration factor
F3_-, is desired. Then

Fios3=Fi2—F _4 (2-30)
By using the reciprocity relation (eq. (2-253)),

A A
F3—1=A—;F|—3=2i'(F|—2—F|-4) 2-31)

This is a powerful tool for obtaining new configuration factors from those
previously computed. This method will be further examined by use of
some examples.

EXAMPLE 2-9: An elemental area dAd, is oriented perpendicular to a

oAy

h r AZ (entire disk
\‘ of radius ry)

As (inner disk \ o7
of radius r;)

FIGURE 2-11. —Interchange between elemental area and finite ring.
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ring of outer radius r, and inner radius ry as shown in figure 2-11. De-
rive an expression for the configuration factor Fai -ring.

From example 2-6, the configuration factor between element dd,
and the entire disk of area A; and outer radius r, was found to be

v =£{ H'+R3+1 _1}
"=z 9 | [(H?+ R+ 1 — 4Rz

where H="h/! and R,=r,/!. The configuration factor to the inner disk
of area A; and radius r; is similarly

F =g{ H*+R2+1 _1}
a=37"9 | [(H*+ R}+ 12 —4R?]\2

where Ri=ri/l. Using configuration-factor algebra, the desired con-
figuration factor from d4, to the ring A2 —A4; is

H H2+Rz+1
Fdl—ring——'Fdl-z_Fdl-s:E { [(H2+ R§+1)2"4R3]”2

_ H*+R3+1
[(H=+T?,=+1)=—4Rﬂ"=}

EXAMPLE 2-10: Suppose that the configuration factor is known
between two parallel disks of arbitrary size whose centers lie on the
same axis. From this, derive the configuration factor between the two
rings A; and A3 of figure 2-12. Give the answer in terms of known
disk-to-disk factors from disk areas on the lower surface to disk areas
on the upper surface.

The factor desired is F._;. From configuration factor algebra, F:_3
is equal to

Fa_3=F3;_g+9—Fz1-4
The factor F2_(3+4) can be found from the reciprocal relation
AeF2-ge0= (Aa+A)Faes)-2
Applying configuration algebra to the right-hand side results in
AsFs_a+9= (A3 + A) [Far-a+2)— Fasn-1]

= (A3 +A)Farn-a+n— (A3 + Ad) Fgsa-1
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Az lring

A4 (central disk)

Ay (central disk— A, tring)

FIGURE 2-12. —Interchange between parallel ring areas having common axis.
Applying reciprocity to the right side gives
AFz_gey= (A +A)Fain-gea—AF1-a+9)

where the F factors on the right are both disk-to-disk factors from the
lower surface to the upper.

Now the factor Fy_; remains to be determined. Again, apply the
reciprocal relations and configuration factor algebra to find

A A
Fz—4=ziF4-2=A—: [F-n-(1+2)“F4-1]

1
=4 (A1 +A)Fas2y-a— Ar1F1-4]

Substituting the relations for F»_4 and Fz_@3+4) in the first equation gives

A1+A2

A
Fy_3= 4 [Fu+n—-@+9—Fa+z)-4] —A-‘ (Fi-g+n—F1-4]
2 2
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and all configuration factors on the right-hand side of this equation are
for exchange between two disks in the direction from disks on the lower
surface to disks on the upper surface. The problem is now solved.

Because of the small differences of large numbers that can occur
when obtaining an F factor by use of configuration-factor algebra (as
might occur on the right side of the last equatiou of the preceding
example), care must be taken that a sufficient number of significant
figures are retained to ensure acceptable accuracy. Feingold (ref. 2)
gives one example in which an error of 0.05 percent in a known factor
causes an error of 57 percent in another factor computed from it by
means of angle-factor algebra.

EXAMPLE 2-11: The internal surface of a hollow circular cylinder of
radius R is radiating to a disk A4, of radius r as shown in figure 2-13.
Express the configuration factor from the cylindrical side A3 to the disk
in terms of disk-to-disk factors for the case of r less than R.

From any position on A; the solid angle subtended when viewing

FiGURE 2-13. —Internal surface of cylindrical cavity radiating to circular disk A
for r < R.
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Aj is the difference between the solid angle when viewing A2. dw2, and
that viewing 44, dws. This gives the F factor from an area element d4,
on A, to area A3 as Fai-a=Fa-2— Fa-4. By integrating over A, and
using equation (2-23), this can be written for the entire area 4,

F|_3=F1-2-F1—4

The factors on the right are between parallel disks. The final result for
F from the cylindrical side 4 to the disk 4, is

A
Fs—1=2§(F1-2"F1-4)

There is a reciprocity relation that can be derived from the symmetry
of a geometry. Consider the opposing areas in figure 2—-14(a). From the
symmetry it is evident that A»=A, and F._3=F4_1, so that
AsFs_3=AF_,. From reciprocity A, =A,F,_s. Hence, there is
the derived relation

i | o
H
: ‘? i | |
| | o |
| Ay A;!
(a)
el A i "21:_/:
T A3 | M
/r T _/A4 | :
I| | |, A T | : [
| l AN I
| &
| I I r"m.+ b

(b

(a) Two pairs of opposing rectangles. AF, = AF2_;.
(b) Four pairs of opposing rectangles. A:F;_1=AsF3 e
FIGURE 2-14. —Geometry for reciprocity between opposing rectangles.



36 THERMAL RADIATION HEAT TRANSFER

AFs_3=A\Fi -

which relates the diagonal directions shown by the arrows on the figure.
Similarly, the symmetry of figure 2-14(b) yields

AsFs_1=AsF 3.4

Figure 2-15(a) shows four areas on two perpendicular rectangles
having a common edge. Since all of these areas are of unequal size,
there is no apparent symmetry relation. However, it will be shown that
the relation is valid that

()

b
e 2
{b)
A
3
I\
X %‘} ¥y
-
Bg S
A4 {x 4 24'

(c)

(a) Representation of reciprocity, A1F-1=A3F3—.
(b) Construction for F,_;.
(c) Construction for Fi_4.

FI1GURE 2-15. — Reciprocity for diagonally opposite pairs of rectangles on two perpendicular
planes having common edge.
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AFi_a=AsF3_4 (2‘32)

To prove this, begin with the basic definition (eq. (2-22)); thus
1F1-z-——f J’ cos 1 cos,Bszszl
4, Jas

From figure 2-15(b), S?2= (x2 —x,P+ y?+ 2z}, cos Bi=2z/S, and
cos Bz=y/S. Then

AF —f f j“d ’ b drdy dxadz
-2 ZymQ JY1=0 Jry=c 2:-0[(x2—xl)2+y€+z%]z 1Ay s

(2-33a)
Similarly, referring to figure 2-15(c) reveals that
A3F3—4=‘1' f J' <03 s cos B :05 2 dAzdA,
T JAs JA, S
c+d
dxsdysdxadz
Ly=me fvi’o J;‘-o »"24-0[ —x4)2+y§+ 4]2 ? ys ! *
(2-33b)

By interchanging the dummy integration variables x, y1, x2, and z. for
X4, ¥3, X3, and z, it is found that the integrals in equations (2-33a) and
(2-33b) are identical, thus proving equation (2-32).

EXAMPLE 2-12: If the configuration factor is known for two perpendic-
ular rectangles with a common edge as shown in figure 2-16(a), derive
the configuration factor F,_¢ for figure 2-16(b).

First, consider the geometry in figure 2—16(c) and derive the factor
F;_4 as follows:

Az A
Fisra-+0y=Fis+t)-1+ Fs16-8= RN —FF;_ (5+s)+A :Ast-(sm)

A A
F(s+s)—(1+s)=2';+—7A: (Fros+ F7—°)+As_+usz (Fs—s+ Fs_g)

Substitute A:F;_s for AeFs-s and solve the resulting relation for F;_s
to obtain

1
Fi1_s =‘277 [(As + Ag)F s+ 8)-7+8y— A7F7_5 — AsF s 6]
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(a

(b

(¢

(a) Perpendicular rectangles with one common edge.
(b) Geometry for F'y—s.
(c) Auxiliary geometry.

Fi1GURE 2-16. — Orientation of areas for example 2~12.

Returning now to figure 2-16(b)

A A
Fl—G=A_:FG—l=A—?FG—(1+3)—"3_‘1F6—3

The factors Fg_a+3) and Fg-3 are of the same type as F;_s so that F,_s
can finally be written as

A 1
Fis= Z? {2—A: [(A1+ As+ A3+ ADF 4243+ 0)-6+8)

1
—AJG-M—ASFS-M,]—m[ua+A4>F(3+4,_(5+6>—AJ6-4—A5F5-3]}

= ek bl e
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All of the F factors on the right side are for two rectangles having one
common edge as in figure 2—16(a).

When formulating relations between configuration factors, it is some-
times useful to think in terms of energy quantities rather than fractions
of energy leaving a surface that reach another surface. For example, in
figure 2-10 the energy leaving 4 that arrives at A4, is proportional to
AsF3_, and is equivalent to the sums of the energies from A; and A,
that arrive at A;. Thus

(A3+A4)F(3+4)—1=A3F3—1+A4F4—l (2-34)
This can also be proved by using reciprocity laws as follows:

(A:!+A4)F(3+4)—1=AIFI-(3+4)=AlFl—3+A1F1-~I=A3F3-1 +AF

25.2 Configuration Factors in Enclosures

To this point, only the radiation exchange between two black iso-
thermal isolated surfaces has been considered, although subdivision
of one or both of the surfaces into smaller portions has been examined.
Consider the very useful class of problems in which the configuration
factors are between black surfaces that form a complete enclosure.
These configuration factors will later have a wider utility when nonblack
diffuse enclosures are analyzed.

For an enclosure of N surfaces, such as shown in figure 2—-17 (where
N=8 as an example), the entire energy leaving any surface inside the
enclosure, for example surface Ax, must be incident on all the surfaces
making up the enclosure. Thus all the fractions of energy leaving one

FIGURE 2-17. — Isothermal enclosure composed of black surfaces.
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surface and reaching the surfaces of the enclosure must total to unity;
that is,

Fe-y+Fe-a+Fig+- - ~+Frxt- - '+Fk—N=~2Fk.j=l
i (2-35)

The factor Fx-x is included because when A is concave, it will intercept
a portion of its own emitted energy.

EXAMPLE 2-13: Two black isothermal concentric spheres are ex-
changing energy. Find all the configuration factors for this geometry if
the surface area of the inner sphere is A; and the area of the outer
sphere is As.

All energy leaving A, is incident upon Az, so the following is known
immediately:

Fl-2=1

Using the reciprocal relation reveals further that

Also, from equation (2-35),
Froy+Fr2=1
or
per=1—Foo = 20

EXAMPLE 2-14: An isothermal cavity of internal area 4, has a plane
opening of area A:. Derive an expression for the configuration factor of
the internal surface of the cavity to itself.

Assume that a black plane surface A: replaces the cavity opening.
Then F:-,=1 and

_ Ay A
F == ==

Since A; and A; form an enclosure,
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(A1 —A>2)
A,

1-1=1=F,_»,=

which is the desired F factor.

EXAMPLE 2-15: An enclosure of triangular cross section is made up
of three plane plates each of finite width and infinite length (thus form-
ing an infinitely long triangular prism). Derive an expression for the
configuration factor between any two of the plates in terms of the plate
widths, L;. L;, and Ls.

For plate 1, Fy_2+ F,-3=1. Using similar relations for each plate and
multiplying through by the respective plate areas result in

AF s+ AF 3= A,

AsFz + AsF2_3=A,
and

AsF3_+ AsF3_2=As

By applying the reciprocal relations to some of the terms, these three
equations become

AF 2+ AF 3= A4,

A\Fy_ s+ AsF3 3= 4,
and

AiF1o3+ AsF2_3=As

thus giving three equations for the three unknown F factors. Subtracting
the third from the second and adding the first give

F =A1+A2-A3=L|+L2—L3
-2 24, 2L,

For the special case of L, =L,, this should reduce to the factor be-
tween infinitely long adjoint plates of equal width separated by an
angle o as given in example 2-8. For L, =L,,
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Ls

2 @
Fl_z——le-— 1—L—l—l—sm§

which agrees with example 2-8.

The set of three simultaneous equations from which the final result
was derived in example 2-15 will now be examined more closely. The
first equation involves two unknowns, F, _» and F; _3; the second equation
has one additional unknown, Fz2_3; and the final equation has no addi-
tional unknowns. Generalizing the procedure for a three surface en-
closure to any N-sided enclosure made up of plane or convex surfaces
shows that of N simultaneous equations, the first would involve N—1
unknowns, the second N —2 unknowns, and so forth. The total number
of unknowns U is then

hl
U=N—-1D+WN=-+N=3)+- - -+1=N—=3j  (2-36)

Jj=1

Thus, for a four-sided enclosure made up of planar or convex surfaces

4
of known area, four equations relating (4p— E J or six unknown con-
=1
figuration factors can be written. Specifying any two of these factors
allows calculation of the rest by solving the set of four simultaneous
equations.
If all the surfaces can see themselves, then the factor Fx_x must be
included in each of the equations. Analyzing this situation, as previously

done, shows that an N-sided enclosure allows writing N equations in
N-1

N2— 2 j unknowns. For a four-sided enclosure, four equations in-
j=

volving 10 unknown F factors could be written. The specification of

six factors would be required, and then the simultaneous relations

could be solved to determine the remaining four factors.

2.5.3 Mathematical Techniques for the Evaluation of Configuration
Factors

As shown by the summary of relations in table 2-1, the evaluation of
the configuration factors Fa—2 and F_; requires integration over the
finite areas involved. There are a number of mathematical methods
that are useful in evaluating certain configuration factors when the
straightforward analytical integration methods become too cumber-
some. These methods can encompass all techniques that are used in
the evaluation of integrals, including numerical approaches.
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A few methods that are especially valuable in dealing with configura-
tion factors will be discussed here.

2.5.3.1 Hottel’s crossed-string method.—Consider the class of con-
figurations, such as long grooves, in which all surfaces are assumed to
extend infinitely far along one coordinate. Such surfaces can be gen-
erated by moving a straight line through space in such a way that it
always remains parallel to its original position.

A typical configuration of this type is shown in cross section in figure
2-18. Suppose that the configuration factor is needed between 4, and
A, when some blockage of radiant transfer occurs because of the pres-
ence of other surfaces A; and 4. To obtain F,_., first consider that
A; may be concave. In this case draw the dashed line agf across 4.
Then draw in the dotted lines ad and abc to complete the enclosure
abcfga which has three sides that are either convex or planar. The
relation found in example 2-15 for enclosures of this type can be
written as

Aagr+ Aape — Ac
AagsF ags-abe= 4L ;bc = (2-37)

For the three-sided enclosure adefga, similar reasoning gives

FiGURE 2-18. —Hottel’s crossed-string method for configuration factor determination.

323-003 O-69—4
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A a + A - A a
A aajF agf-def= 2L 2“! 4 (2"38)

Further, note that
Fags-avc+ Fagr-2+ Fagr-des=1 2-39)
Substituting equations (2-37) and (2-38) into equation (2-39) results in
AagFagr-2=Aagr(1 —Fagr-ase—Fags-des)

=Acf+Aad_Aabc "Adef
2

(2-40)

Now F3_ggy=F3_1 since Aqgy and 4; subtend the same solid angle when
viewed from A4;. Then with the additional use of reciprocity, the left
side of equation (2-40) can be written as

Aag/Fagj-z =A2F2-avf=Aze-l =AFis (2"41)
Substituting equation (2—41) into equation (2—40) results in

Acs+ Aaa— Aave — Ades
2

AFy = (2—42)

If the dashed lines in figure 2-18 are imagined as being lengths of
strings stretched tightly between the outer edges of the surfaces, then
the term on the right of equation (2—-42) is interpreted as one-half of
the total quantity formed by the sum of the lengths of the crossed strings
connecting the outer edges of 4; and A: minus the sum of the lengths
of the uncrossed strings. This is a convenient way of determining
configuration factors in this type of two-dimensional geometry and was
first pointed out by Hottel (ref. 3).

EXAMPLE 2-16: Two infinitely long semicylinders of radius R are
separated by a minimum distance D as shown in figure 2-19. Derive
the configuration factor F,_; for this case.

The length of crossed string abcde will be denoted as L,, and of
uncrossed string ef as L,. From the symmetry of the problem, equation
(2—42) may be written

2L| -2L2=L1 "Lz

Fl-z = 2Al ‘)TR
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~
~
—  —— -

FiGURE 2-19.—Configuration factor between infinitely long semicylinders by crossed-
string method.

The length L, is given by
Lz = D + 2R

The length of L, is twice the length cde. The segment of L, from ¢ to &
is found from right triangle Ocd to be

oG] G-]

and the segment of L, from d to e is
L], d—e = Ro

From triangle Ocd, the angle 8 is given by
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@=sin"! (—D—R;-)
§+R

Combining the known relations results in

F __Ll—Lg_2(L1,c-d+Ll.d-e)—L*z
1-2= -

R 7R
[40 (9-+ R)]”2+2R sin-1 (—-R—>—D—2R
4 D
—+R
2
- mR
Letting X =1+ (D/2R) gives
2 . 1
F1—2=1—T [(X2—1)1/2+ sin~! (;Y-)—X] (2—-43)
This can also be put in the form
F1-2=% [(X’—1)1’2-i--21£—cos'l G)-—X] 2-44)

which agrees with the result in reference 5.

2.5.3.2 Contour integration.— Another tool that is useful in the evalua-
tion of configuration factors is the application of Stokes’ theorem for
reduction of the multiple integration over a surface area to a single
integration around the boundary of the area. This method is treated at
some length by Moon (ref. 4), Sparrow and Cess (ref. 5), and Sparrow
(ref. 6). Consider a surface area A as shown in figure 2-20 with its bound-
ary designated as C (where C is piecewise continuous). The location of
an arbitrary point on the area is at coordinate position x. y, z. At this
point the normal to 4 is constructed and the angles between this normal
and the x-, y-, and z-axes are designated as «, v, and 8. Let the functions
P, Q, and R be any twice differentiable functions of x, y, and z. Stokes’
theorem in three dimensions provides the following relation between
an integral of P, Q, and R around the boundary C of the area and an
integral over the surface A of the area:

ﬁ (P dx+0Q dy+R dz)

= [ [(3R_3Q P _ IR 9Q _oP ]
—L [(6){ az_>coso¢+<az ax) cosy+(ax ay) cos 8| dA
(2-45)
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Normal to
Aa xyz-

/
<Boundary C

FIGURE 2-20, —Geometry for quantities used in Stokes' theorem.

Now this relation will be applied to express area integrals in configura-
tion factor computations in terms of integrals around the boundaries
of the areas.

2.5.3.2.1 Configuration factor between a differential and a finite area:
The integrand in the configuration factor Fa;—; is

COS8 1 COS P2
cos B cos B 44,
S

as shown in table 2-I. In general, for the two cosines the following can
be written (fig. 2-21):

cos B,:(ngxl) cos ay +(yz_;ﬂ) cos y,+(zzgzl) cos &,
(2-46)

cos 2= (x‘ gxz) cos az+ <L;ZZ> cos yz+ (z' ;22) cos 8,
(2-47)

This follows from the relation that, for two vectors 7, and 72 having



Normal to
dAz\
~

L‘ll, )0 ll)

FIGURE 2-21. —Geometry for contour integration.

direction cosines (/;, my, ny) and (l2, m2, n2), the cosine of the angle
between the vectors is given by 5,/ + mimz + nin..

Substituting equations (2-46) and (2-47) into the integral relation for
a configuration factor between a differential element and a finite area
gives

cos B cos f:
Fm—2=f dAd,
As

7S

_1 [(x: = x,) cos a1+ (y2—y1) cos y1+(z: —21) cos |
T Ag S4

X [(x1—~x2) cos az+(y1—¥2) cos vet+(z1—22) cos 8;] dd.  (2—48)
Now let
=cos a

m=cos Yy (2—-49a)
n=cos &
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and

f___ (xz—xl)ll + (y2 — y1)my + (22 — z1)n (2_49b)
754

Equation (2-48) can then be written in the abbreviated form
Fas=[ st o= plfmt (—adfouldds (2-50)

Comparison of equation (2-50) with the right side of equation (2—-45)
shows that Stokes’ theorem can be applied if

R _3Q_ . _ _

Py azz—(xl x2)f (2-51a)

P R _ .

'a;_—axz—(}’x }’2)f (2 51b)
and

8Q P .

3;2—3}72—(21 z)f (2-Slc)

Sparrow indicates (ref. 6) that useful solutions to these three equations
are of the form

P_-m;(Zz—n) + iy —x)

= S (2—-52a)
0= l.(Zz—zn)z;;l(xz—xl) (2-52b)
R=-11()’2—}’12)7r';2m|(xz"11) (2-52¢)

Equation (2—45) is used to express Fqi—z in equation (2-50) as a contour
integral; that is,

Fan-z=§c (P dx:+ Q dy:+ R dz2) (2-53a)

Then P, Q, and R are substituted from equations (2-52), and the result
is rearranged to obtain
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F _i‘ (Zz-Zl)dﬁ—(Yz—}’x)de
a-2 =5 s 5z

m (x2—2x1)dzz — (22 — 21 ) dx2
2w Ca 52

n (y.z——yl)dx-z—(xz—xl)dy'-’ -
+21r Cs s @b

The double integration over area A has been replaced by a set of three
line integrals for determination of Fa1-s. Sparrow (ref. 6) discusses the
superposition properties of equation (2-50) that allow addition of the
configuration factors of elements alined parallel to the x-, y-, and z-axes
to obtain the factors for arbitrary orientation.

] a —

to Az, nz

FIGURE 2-22. — Configuration factor between plane area element and right triangle in
parallel plane.
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ExXAMPLE 2-17: Determine the configuration factor Fg, -2 from an ele-
ment dA, to a right triangle as shown in figure 2-22. )
The normal to dA, is perpendicular to both the x- and y-axes and is
thus parallel to z. The direction cosines for d4, are then
cos ay=0,=0
cos y1=m; =0
and
cos 8,=n =1

and equation (2—53b) becomes

F =i (yz_}’l)dxz"(xz—xl)dﬁ
d1-2 o 52

Since dA, is situated at the origin of the coordinate system, x,=y,=0
and F4;-; further reduces to

F - i Y2 dx2 — X2 dy,
-2 =90 v, ‘—'——Sz

The distance S between d4; and any point (x2, y2, z2) on Az is
S=x+yit+a=x3+yvi+d’

The contour integration of the configuration factor equation must now
be carried out around the three sides of the right triangle. To keep the
sign of Fai-2 positive, the integration is performed by traveling around
the boundary lines I, II, and III in a particular direction. The correct
direction is that of a person walking around the boundary with his head
in the direction of the normal n, and always keeping 4> to his left. Along
boundary line I, x;=0, dx;=0, and 0 < y; < a. On boundary II, y:=a,
dy:=0, 0 <x, <b. On boundary III, the integration is from {=0to ¢
where £ is a coordinate along the hypotenuse of the triangle so that

xe=(c—¢&) sin 6

y2=(c—§) cos 0
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and

dx,=—sin 6 d¢

dy:=—cos 0 d¢

Substituting these quantities into the integral for Fai-2 gives

[ y2dxa—xdy
2,,pdl_z_§c' R

=§ y:dxz_xzdﬁ
I, 1, I x§+y§+d2

b — adxz
zpm0 X3+ a?+d?

¢ —(c—§&) cos 8 sin B dE+ (c—¢) sin 6 cos 6 d§

21I’F¢n —2.= o+

F e T (c— ) sin 0+ (c—£)* cost O+ d°
or
_ ] adxz
2‘H’Fa1-z—J; x}+ a2+ d?

Use of the integral tables gives

Folo= a o b
"2 ol o (@)

or, in dimensionless variables,

_ X [ Xtan 6
Fae=grmxmm 2 |0 rxn)"

where X=a/d and tan 8= b/a.

25.3.2.2 Configuration factor between finite areas: For configuration
factors between two finite areas, substitute equation (2-53b) into equa-
tion (2-23) which gives
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AFi_s= AsF2y =L. Fa-2dA,

1 ﬁ, [ Qe—n)m—(z2—z)m dAl] dxz

=2 Je, U, 5
1 0 Goz)h—(e—x)m
+27T §C’ u.f-h §? dA‘] d)’z

1[I e—x)m—(y2—y)h _
+é L - dA.]dz-; (2-54)

- where the integrals have been rearranged and the dx;, dy:, and dz
factored out since these are independent of the area integration over 4,.

Stokes’ theorem in applied in turn to each of the three area integrals.
Consider the first of the integrals

(}'2'“}’1)”1 —(z —z)my
A §2 ddy

and compare it with the area integral in Stokes’ theorem equation (2—45).
This gives

R _2Q_,
n 921

0z dax; Sz
Q@ 3P _(y2—y)

— ——— = gL

axy on S2

A solution to this set of partial differential equations (ref. 6) is P=In S,
Q=0, and R=0; and the area integral becomes, by use of equation
(2-45) to convert it into a surface integral,

(2= ym — (22 — z1)m, dd,=¢ InS dx

A S c,

By applying Stokes’ theorem in a similar fashion to the other two in-
tegrals in equation (2—54), it can be written as
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1

AlF,-¢=§-1— ] ( ] lnde,) dry+ o

T

( InS dy;) dys
Cs [

+i§( lnSdzl)dzz
2w Je, \ Jc,

or, more compactly,

1

21TA 1Jcy JCa

Fia= (InS dxz2dx, + In S dy2dy: + In S dz2dzy)  (2-55)

Thus the integrations over two areas which would involve integrating
over four variables have been replaced by integrations over the two sur-
face boundaries. This allows considerable computational savings when
numerical evaluations must be carried out, and can sometimes result in
analytical integration being possible where it could not be carried out
for the quadruple integral over the areas.

EXAMPLE 2-18: Using the contour integration method, formulate the
configuration factor for parallel rectangles as shown in figure 2—-23.

Note that on both surfaces dz will be zero. First, integrate equation
(2-55) around the boundary C;. The value of S to be used in equation
(2-55) is measured from an arbitrary point (x1, y1, 0) on A, to a point on
the portion of the boundary C; being considered. This gives

| b _i
a pol
(x9, ¥, c)

~N
-f{ - - —
E]

~

[}

ixl, 1.0
P

FIGURE 2-23.—Contour integration to determine configuration between two parallel plates.
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1 [
Framgag $ { [ nld+ o=y s e dn

Y=

0
+ , In [(@ = %12+ (32 — 71 * + c2]12 dyz} dy, -

1

+271'ab c

{ J’:’o In [(xz =212+ (b —y1)* + 2]V2 dx,

)]
+ In [(xg —=x:12+ y2+ c'*’]dxz} dx,

Ie=a

Then, carrying the integration out over C, gives, in this case, eight
integrals. The first four, corresponding to the first two integrals of the
previous equation, are written out as

b b
2wabF;_z=[ of . In [@2+ (y:—x1)2+ ]2 dysdn
n= Pl
[} ]
+f f In [(yz—yl)z+cz]"2 dy:dy:
yi=b Jus=0
> 0
+f f In [(y:— n)2+ ]2 dypidy,
Y1=0 Jys=b
0 0
+f f In [a*+ (}’2-}’1)2+Cz]1/2 dy:dy
Vi=bJys=d
+ (4 integral terms in x)
b b a?+ (ys—y P+ c?
= 1
fu1=0 J;==o n[ =y P+t ] dyady:

a a 5 2 2
+f f In [(x, x):+b +cz] duyd,
ry=0 Jr,=0

(x2—x)2+c?

and the configuration factor is now given by the sum of two integrals.
These can be integrated analytically by factoring the quadratic terms and
using the relations governing log functions. This procedure results in a
lengthy algebraic expression which will not be given here.

2.5.3.3 Differentiation of known factors.—A further extension of con-
figuration factor algebra is the generation of configuration factors
between differential elements by differentiating known factors between
finite elements. This technique is very valuable in certain cases, and is
best demonstrated by the use of an example problem.
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EXAMPLE 2-19: As part of the determination of radiative exchange in a
square channel whose temperature varies longitudinally, it is desired to
find the configuration factor dFai-# between an element dA4, at one
corner of the channel end and a differential length of wall section dA.
as shown in figure 2—24(a).

Configuration factor algebra plus differentiation can be used to find
the required factor. Refer to figure 2-24(b). Since the fraction of energy
leaving dA; that reaches dA: is the difference between the fractions
reaching the squares 43 and A, the factor dF 4142 is the difference
between Fa)—3 and Fai—4. Then

dFdx-dz=Fd1-3_Fm-4=—A‘F_d‘-—qAx == 3_€gx_:g dx
Ax Ar—0 dx

[~A4

dAl 7

NANNNNNNN

\
\

‘%
%

)]

() Configuration factor between dd, and differential length of channel wall d4,.
(b) Configuration factor between dA; and squares As and A..

FIGURE 2-24.-Derivation of configuration factor between differential length of square
channel and element at corner of channel end.
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Thus, if the configuration factor Fa-g between a corner element and
a square in a parallel plane were known, the derivative of this factor
with respect to the separation distance can be used to give the required
factor.

From example 2-17, the configuration factor between a corner element
and a parallel isosceles right triangle is given by setting tan 8=1 in the
expression derived for a general right triangle. This yields (for the present
case where the distance d=1x)

Fa-p=g—r—; tan™! | ==
B-NT gt i AN | (G2 papne

Inspection shows that, by symmetry, the factor between a corner ele-
ment and a square is twice the factor Fa;-p. The required factor dFai-a
is then

PN PR N S W

dx r 8x |(a?+x2)/2 ta (a2 + x2)u2
. axdx {tan-‘ [ a ]+a(a2+xz)llz}
m(a? + 2?2 (a2 + 2212 x%+2a?
= XdX _ 1 1+ leuz}
T w1+ X3P {tan ' [(1 +Xz)|/z] + 2+ X2

where X =zx/a.

More generally, start with the configuration factor F',—; for two parallel
areas 4, and A4, that are cross sections of a cylindrical channel of arbi-
trary cross-sectional shape (figz. 2-25(a)). This factor depends on the
spacing |x2 — x| between the two areas and includes blockage due to
the channel wall (i.e., it is the factor by which 4: is viewed from 4, with
the channel wall present). Note that for simple geometries, such as a
circular tube or rectangular channel, the wall blockage is zero. The
factor between 4; and dA, in figure 2—25(b) is then given by

oF_»

dFl_a == axz

(2-56)
as in example 2-19. Equation (2—-56) will now be used to obtain dFa;-az,
the configuration factor between the two differential area elements in
figure 2—25(c).

By reciprocity

—A, 0F,_,

Fa-= dAz 0x2

dx;
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Cylindrical channet with arbitrary

(a) Two finite areas; F;—;.
(b) Finite to differential area. dF .-¢=—9{:':—1 dx,.
2
(c) Two differential areas. dF.n..n=—ﬁ- PFi dxadx,.
dAl az.ax,

FIGURE 2-25. — Configuration factors for differential areas as derived by differentiation of
factor for finite areas.

Then in a fashion similar to the derivation of equation (2—-56)

aF g
dF p-ay =32 di
X1
Substituting Faz-1 results in
— A| 62F1_2
dFdz_dl = dA_z _‘-axl 9%z dxz dx, (2 573)

or after using reciprocity
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AP
dFa-a ZA: 37: 972 dx; dx, (2-57b)

Hence, by two differentiations the factor dFai—a2 can be found from F_;
for the cylindrical configuration under consideration.

2.6 COMPILATION OF REFERENCES FOR KNOWN CONFIGURATION
FACTORS

Many configuration factors have been tabulated for specific geometries,
and these tabulations are spread throughout the literature. Rather than
attempt to gather the factors here, a feat that would require a separate
volume of size equal to the present one, another course has been followed.
In table I of appendix A, a list of geometries for which configuration
factors are available and a reference list to aid in finding these factors
are given. This provides a more useful general compilation than gathering
only a limited number of factors here.

2.7 RADIATION EXCHANGE IN A BLACK ENCLOSURE

In the preceding parts of this chapter, the energy exchange between
two separate surfaces or surface elements has been examined, and the
concept of the configuration factor has been introduced. In this section,
these ideas are generalized to consider the energy exchange within an
enclosure composed of black surfaces that are individually isothermal.

In practice, the interior walls of a black enclosure, such as a furnace,
may not be isothermal. In such a case, the various nonisothermal sur-
faces are subdivided into smaller portions that can be considered indi-
vidually isothermal. The theory for a black enclosure, which is an ideal
case, will serve as an introduction to less restrictive theory in succeeding
chapters.

Perform a heat balance on a typical surface Ax (fig. 2—26). The energy
supplied to Ax from an external source in order to maintain Ax at T is
Q«. The emission from Ax is oTidi. The energy received by Ax from
another surface 4; is oT#4;F;_«. The heat balance is then

N
Qk = O'T,‘cAk bt 2 O'T;Aij_k (2"‘58)

=1

where the summation includes energy arriving from all surfaces of the
enclosure including Ak if A« is concave. Equation (2-58) can be written
in some alternate forms. Applying reciprocity to the terms in the summa-
tion results in

323-003 O-69-—5
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A
1
FIGURE 2-26. — Enclosure composed of N black isothermal surfaces (shown in cross section
for simplicity).
N
Qk = O'T:Ak - 2 (TTj‘Aka—J (2—59)
j=1

Also, for a complete enclosure, from equation (2-35)

N
Z Fk__,'=l

=

so that

N N
Qk= O'chAk 2 Fk_j— O’Ak 2 T}Fk_j
Jj=1 j=1
N
=gAk 2 (Tﬁ- T_;")Fk—j (2-60)
=t

This is in the form of a sum of exchanges between 4x and each surface.

EXAMPLE 2-20: The three-sided black enclosure of example 2-15
has its surfaces maintained at temperatures T1, T2, and T3, respectively.
Determine the amount of energy that must be supplied to each surface
per unit time in order to maintain these temperatures —this is also the
net radiative loss from each surface.
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Equation (2-60) is written for each surface as
Q=AF1.20(T4—T}) + AF 130 (Ti —T})
Q:=AzF2_,0(T}—T4) + A:F> 30 (T4 —T3)
Qu=AsF310(T4—T}) + AsF30 (T§—T})

The configuration factors have been found for this geometry in ex-
ample 2-15. Thus all factors on the right of this set of equations are
known, and the Q values may be computed directly.

A check for a numerical computation is that from overall energy
conservation, the net Q added to the entire enclosure must be zero in
order to maintain steady-state temperatures. This is also shown by
using reciprocal relations on the set of Q equations to obtain

3
2 Q= [A\F1-20(T—T3) +A1F|—3C"(Tt”'T;)]

k=1

+ [A.Fl_za'(T;— T‘:) +A2F2-3G'(T;“‘ T;)]
+ [A;F,_na'(T;— T?) +A2Fz_30'(Tg— T:)]

=0
EXAMPLE 2-21: The enclosure of example 2-15 has two of its sides
maintained at temperatures T, and T3, respectively. The third side is
an insulated (adiabatic) surface, Q3 =0. Determine Qy, Q:, and T;.
Again equation (2-60) can be written for each surface as

Q] =AlF1_2O'(Tf— T;) +A|F|_3O’(T:- T;)
Qz =A2Fz_1G’(T;— T?) +A2F2_30'(T; - T;)
0= AsF3_10 (T4 — T3) + AsF5 0 (T4 —T?)

The final equation is solved for T3, the only unknown in that equation.
This T3 is then inserted into the first two equations to give Q, and Q..

EXAMPLE 2-22: A very long black heated tube A, of length L is en-
closed by a concentric black split cylinder as shown in figure 2-27. The
diameter of the split cylinder is twice that of the heated tube, and
one-half as much energy flux is to be removed from the upper area
Az of the split cylinder as from the lower area 4». If T, =3000° R and a
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(a) Geometry of enclosure.
(b) Auxiliary construction to determine Fz_,. )
FIGURE 2-27. —Radiant energy exchange in split-circular cylinder configuration, L > Rs.

heat flux Q1/4; = 10% Btu/(hr)sq ft) is supplied to the heated tube, what
are the values of Tz, T3, Q:, and Q32 Neglect the effect of the tube ends.
Writing equation (2-60) for each surface gives
01 =A|F1_20'(Tf— Tg) +A1F1-30’(T': - Tg)
Qz =A-_’Fz_1O'(Tg - T:) +A2Fz_30'(Tg - Tg)

Qs=AsFs10(T4—T$) + AsF 2o (T3~ T$)

From the geometry
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since D, =2D,. From an energy balance
Q1 +Q:+Q3=0
and, since A, =A2=A4;,

[ I
LTt

From the statement of the problem,

Q_10:
4 24

and this yields

Q_ 20
L34, 0.667 X 10% Btu/(hr)sq ft)

%=—l -Q—l=—0.333 X 10° Btu/(hr)(sq ft)

From the symmetry of the geometry and configuration factor algebra, ivis
known that

1
Fl-z=F1-3='2'
AFi3 1
- =F = = -
FZ 1 3-1 A3 2
and
2-3=Fa_

To determine F_3 it is known that
Faa+Fy 3+ F,3=1
Using F3-1=1/2 gives

1
F2—3=5"F2—2

In the auxiliary construction of figure 2-27(b)

Fr2=1—F, ¢
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The effective area Ax has been drawn in to leave unchanged the view of
surface 2 to itself and to simplify the geometry so that the crossed string
method can be used to determine F._g. The uncrossed strings extending
from a—a’ and b— b’ have zero length. The crossed strings extend from
a—>b' and a’ — b, and each has the length 2\/§R,+ (wR,/3). Then, from
section 2.5.3.1 and the fact that A»=A,=27R,,

‘ﬂ'Rl
; 2V3R, + 3 _£+1
- 2#R, T 6
It then follows
1 1 31
F2-3=§-'Fz_z=§—(1—F2_5)=T—§=O.218

With this information, the energy exchange equations can now be written
as

1os=g- (30004 —T%) +% (30004 —T?%)
—0.667 X 1o==% (T3 —3000%) +0.2180 (T3 —T4)

—0.333 % 1os=% (T$—3000) +0.2185 (T4~ T3)

Adding the second and third equations results in the first, so only two
of the equations are independent. Solving the first and second equations
gives T>=1890° R and T>=2400° R.

2.8 CONCLUDING REMARKS

In this chapter, methods have been introduced and developed for the
computation of energy exchange between isothermal black surfaces and
in enclosures consisting of individual isothermal black surfaces. The
radiant interchange between individual isothermal black surfaces can
be treated by reasonably straightforward techniques. The chief dif-
ficulties in such problems are not in the concepts involved, but are
rather in the geometrical and algebraic manipulations plus the inte-
grations that must be carried out to determine the configuration factors
for specific geometries. These difficulties are minimized by the avail-
ability in the literature of fairly extensive formulas, graphs, and
tabulations of configuration factors that have already been calculated.
References to the sources of these factors are given in table A-I of
appendix A.
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For practical radiation computations, the assumption of black surfaces
is quite restrictive. Hence, the results given here have limited direct
application; there may be some instances, such as within certain fur-
naces, where a black computation will yield reasonable results. The
black computation theory, in spite of its limitations, serves two important
functions. First, it is a limiting case with which nonblack performance
and computations can be compared. It provides a good numerical
check for problems in which a parametric study is being made wherein
the radiation properties are varied over a range of values. The second
function is that the black case provides a foundation for more general
exchange and enclosure theories. In succeeding chapters, the approach
used in this chapter will be adapted and extended for problems that
deal with more complicated effects such as nonblack and nonisothermal
surfaces.
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Chapter 3. Radiation Exchange in an Enclosure
Composed of Diffuse-Gray Surfaces

3.1 INTRODUCTION
3.1.1 Restrictions in the Analysis

In the previous chapter an enclosure composed of black surfaces
was considered. As a next step in building toward more complex treat-
ments that can account for the real property behavior of surfaces, the
surfaces of the enclosure will now be taken as both diffuse ard gray.
In chapter 3 of Vol. I, the relations between emissivity and absorp-
tivity are discussed. By definition, when a surface is diffuse-gray, the
directional spectral emissivity and absorptivity do not depend on either
angle or wavelength, but can depend on surface temperature. As a result
of this definition, at any surface temperature T, the hemispherical total
absorptivity and emissivity are equal and depend only on T4; that is,
a(T4) = €(T4). Even though this behavior is approached by only a lim-
ited number of real materials, the diffuse-gray approximation is often

made to simplify greatly the enclosure theory.
Some comment is warranted as to what is meant by the individual

“surfaces” or ‘“‘areas” that comprise the total enclosure boundary.
Usually, the geometry will tend to divide the enclosure into natural sur-
face areas, such as the individual sides of a rectangular prism enclosure.
In addition, it may be necessary to specify surface areas on the basis of
heating conditions; for example, if one side of an enclosure is partly at
one temperature and partly at a second temperature, the side would be
divided into two separate areas so that this difference in boundary condi-
tion could be accounted for. Hence, the ‘surfaces” or “‘areas™ dis-
cussed in the radiation analysis are simply each separate portion of the
enclosure boundary for which a heat balance is formed. These portions
are selected on the basis of geometry and imposed heating conditions. A
further consideration is the accuracy of the solution. If too few areas are
designated, the accuracy will be poor; too many areas will require exces-
sive computational time. Thus some engineering judgment is required
in selecting both the shape of the surfaces and their number.

Surfaces of the enclosure can have various thermal boundary condi-
tions imposed upon them. A given surface can be held at a specified tem-
perature, have a specified imposed heat input, or be perfectly insulated
(i.e., specified heat input=0). It is a restriction in the present analysis

67
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that, whatever conditions are imposed, each separate surface of the en-
closure must be at a uniform temperature. If the imposed heating condi-
tions are such that the temperature would vary markedly over an area,
the area should be subdivided into smaller more nearly isothermal
portions; these portions can be of differential size if necessary. As a
consequence of this isothermal area requirement, the emitted energy
is taken to be uniform over each surface of the enclosure.

Because a gray surface is not a perfect absorber (i.e., its absorp-
tivity is less than unity rather than unity, as for the black case considered
in chapter 2), part of the energy incident on a surface is reflected. With
regard to the reflected energy, two assumptions are made: (1) the re-
flected energy is diffuse, that is, the reflected intensity at each position
on the boundary is uniform for all directions and (2) the reflected energy
is uniform over each surface of the enclosure. If the reflected energy is
expected to vary over an area, the area should be subdivided into smaller
areas over which the reflected energy will not vary too much. With these
restrictions reasonably met, the reflected energy for each surface has the
same diffuse and uniformly distributed character as the emitted energy.
Hence, the reflected and emitted energy can be combined into a single

energy quantity leaving the surface.
When a surface is both diffusely emitting and reflecting, the intensity

of all the energy leaving the surface does not vary with angular direction.
As a result, the geometric configuration factors (F factors) derived for
black surfaces can be used for the present enclosure theory. It is well to
emphasize that the derivation of the F factors in chapter 2 for black sur-
faces was based on the condition of a diffuse uniform intensity leaving the
surface; this diffuse-uniform condition must be true for both the emitted
and reflected energies in order to use the F factors for a nonblack
surface.

Most of the problems encountered in practice are at steady state.
However, the radiative heat balances considered here are not limited to
steady-state conditions. The radiative balances can be directly applied to
situations where transient temperature changes are occurring. In-
stantaneously, the heat flux g that will be computed in the enclosure
theory that follows can be considered as the net radiative loss from the
location being considered on the enclosure boundary. For example, if a
solid body is cooling by radiation, ¢ provides the boundary condition for
the transient heat conduction solution for the temperature distribution

within the solid.
3.1.2 Summary of Restrictions

The assumptions for the present chapter are now summarized. The
enclosure boundary is divided into areas so that over each of these areas
the following restrictions are met:
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(1) The temperature is uniform.

(2) The €], a}, and p; are independent of wavelength and direction
so that €(T) =a(T.) =1—p(T4) where p is the reflectivity.

(3) All energy is emitted and reflected diffusely.

(4) The incident, and hence reflected energy flux, is uniform over
each individual area.

In some instances an analysis assuming diffuse-gray surfaces cannot
yield good results. For example, if the temperatures of the individual
surfaces of the enclosure differ considerably from each other, then a
surface will be emitting predominantly in the range of wavelengths char-
acteristic of its temperature while receiving energy predominantly in a
different wavelength region. If the spectral emissivity varies with wave-
length, the fact that the incident radiation has a different spectral
distribution than the emitted energy will make the gray assumption in-
valid, that is, €(T4) # a(T+). When polished (specular) surfaces are
present, the diffuse reflecting assumption will be invalid, and the direc-
tional paths of the reflected energy must be considered. The treatment
of specular and other more general surfaces are the subjects of chap-
ters 4, 5, and 6.

3.2 SYMBOLS
A area
K4 inverse matrix coefficients, eq. (3-29)
d4* differential element on same surface area as d4
ax matrix elements defined by eq. (3-25)
a! inverse matrix
Cy matrix elements defined by eq. (3-25)
D diameter of tube or hole
F configuration factor
G function in integral eq. (3-57)
J auxiliary variational function, eq. (3-58)
J. k indices denoting individual surfaces
K kernel of integral equation
L length of surface
) dimensionless length
My minor of matrix element ax

number of surfaces in enclosure

energy per unit time

energy flux; energy per unit area and time
radius of sphere

direction vector

distance between areas

absolute temperature

N Q2
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x, ¥, 2 coordinates

a absorptivity

B cone angle; angle from nermal of surface
Yy polynomial coefficients, eq. (3-59)

b} Kronecker delta

€ emissivity

é&m dimensionless coordinates

P reflectivity

e g Stefan-Boltzmann constant

@ dependent variable in integral equation, eq. (3-57)
Subsecripts:

A area

a apparent value

black blackbody property

e external radiation entering through opening; environment
i incoming

I k property of surface j or k

o outgoing

s sphere

A spectrally (wavelength) dependent

1,2 surface 1 or 2

Superscript:

quantity in one direction

3.3 RADIATION BETWEEN FINITE AREAS
3.3.1 Net Radiation Method

Consider an enclosure composed of NV discrete surface areas as shown
in figure 3-1. The objectives of the analysis will be to analyze the radia-
tion exchange between the surface areas for problems involving two
types of boundary conditions: (1) the required energy supplied to a
surface is to be determined when the surface temperature is specified,
and (2) the temperature that a surface will achieve is to be found when
a known heat input is imposed.

There is a complex radiative exchange occurring inside the enclosure
as radiation leaves a surface, travels to the other surfaces, is partially
reflected, and is then rereflected many times within the enclosure with
partial absorption at each contact with a surface. It would be very com-
plicated to follow the beams of radiation as they undergo this process;
fortunately, it is not necessary to do this. An analysis can be formulated
in a convenient manner by using the *‘net radiation method.” This method
was first devised by Hottel (ref. 1) and later presented in a different man-
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1

FIGURE 3-1. — Enclosure composed of N discrete surface areas with typical surfaces and
k (shown in cross section for simplicity).

ner by Poljak (refs. 2 and 3). An alternate approach was given by Gebhart
(ref. 4). All of the methods are basically equivalent (as demonstrated in
ref. 5); the Poljak approach, which the present authors generally prefer,
will be given in this chapter. The Gebhart method is briefly presented in
appendix B.

Consider the kth surface having area Ax of the enclosure shown in
figures 3-1 and 3-2. The quantities ¢ and g, are the rates of incoming
and outgoing radiant energy per unit surface area, respectively. The
quantity g is the energy flux supplied by some external means to the
surface to make up for the net radiative loss and thereby maintain the
specified surface temperature. A heat balance at the surface provides
the relation

Qx=qrArx= (o, x — @, k) Ak (3-1)

A second equation results from the fact that the energy flux leaving

Q, k " 9, kAx
o =q kA '
(NG Pk, KAk

<7

€ TKA

ikth surtace
with area Ay

Q = OAy

FiGURE 3~2. — Energy quantities incident upen and leaving typical surface of enclosure.
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the surface is composed of directly emitted plus reflected energy. This
gives
Qo. k = €T + prqi, x

=eoTi+ (1 —e)gix (3-2)

where the relations pr=1—ax=1—€ have been used for opaque gray
surfaces. The term “radiosity” is often used for the quantity go. The
incident flux gy, x is derived from the portions of the energy leaving the
surfaces of the enclosure that arrive at the kth surface. If the kth sur-
face can view itself (is concave), a portion of its outgoing flux will con-
tribute directly to its incident flux. The incident energy is then equal to

Ale,k=AIQo, lFl—k+A2Qo.2F2—k+ LI +AJQo,ij—k

+ - - - +Aon.ka—k+ oo +AN(I0,NFN—’¢ (3—3)

From the configuration factor reciprocity relation (eq. (2-25)),

AF o= AiF k-1
AsFs e =ArFr-2 (3-4)

...........

AnFy-k= AcFr_n

Then equation (3-3) can be written so that the only area appearing is 4

Arqi, k= AxFk-1go, 1 + AxFx-2o,2 + - - - + AxFx-jqo.;
+ o s+ ApFekGox+ ¢+ ¢+ FArFk-xqo, ¥ (3—5a)
or
N
k= Fx-jq.; (3-5b)

j=1

Equations (3-2) and (3-5) provide two different expressions for
gi.x. These are each substituted into equation (3~1) to eliminate g, «
and provide these two basic heat balance equations for Q« in terms
Of Qo, ks

Qr=Ax ——=— (aTt = qo,x) (3-6)

1

€x

Q= (@05 3 i) (3-7)

J=1
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where Qx can be regarded as either the energy supplied to the surface k
by external means or the net radiative loss from surface k.

As a first step in becoming familiar with this radiation analysis, con-
sider that equations (3-6) and (3~7) can be written for each of the ¥V
surfaces in the enclosure. This provides 2V equations for 2N unknowns.
The g¢.'s will be N of the unknowns. The remaining unknowns will
consist of Q’s and T’s depending on what boundary quantities are
specified. As will be shown later, the go's can be eliminated giving N
equations relating the ¥ unknown Q’s and Ts.

Some examples will now be given to illustrate the use of equations
(3-6) and (3-7) as a system of simultaneous equations.

EXAMPLE 3—-1: Derive the expression for heat exchange between two
infinite parallel flat plates in terms of their temperatures T, and T;
(T\>T,) (fig. 3-3).

Since all the radiation leaving one plate will arrive at the other plate,
the configuration factors are Fy_;=F;_;=1. Equations (3-6) and (3—-7)
are then written for each plate

%=q1=1i€1 (oT{—qo. 1) (3-8a)
%‘—‘q:‘—"h.l—'%.z (3-8b)
%=q,=-1{2-€: (T4 —o.2) (3-9a)
A:=qz=qo.z—qo,1 (3-9b)

Surface 2

Surface 1

9,1 N\ /%,1
)

i1

FIGURE 3-3. — Heat fluxes for radiant interchange between infinite parallel flat plates.
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By comparing equations (3—8b) and (3-9b), it is evident that g1 =—g: so
that the heat added to surface 1 is removed from surface 2. The flux
q1 is thus the net heat exchange from 1 to 2 requested in the problem
statement. Equation (3—8a) is solved for go,:

(1—e1)

Go.1=0Tt— , a
Similarly, from equation (3—9a)
Qo.2= O'TQ—(I—.—ezl @=cTi+ (1—e) o
€2 €

These are substituted into equation (3-8b) and the result solved for ¢,

T4—T4
Qn=—g= 1"( L 12) (3-10)

GI(T1)+;2(—T2)— 1

The functional notation &) has been introduced to emphasize that
€, and & can be functions of temperature. Since T; and T; are specified,
the & and & can be evaluated at their proper temperatures and ¢ di-
rectly calculated.

ExAMPLE 3-2: For the parallel plate geometry of the previous example,
what temperature will surface 1 reach for a given heat input g while
T: is held at a specified value?

Equation (3-10) still applies and when solved for T\ gives

=14 1 1 _ ] ‘}1/4 ~
d {a[e,(Tl)+52(Tz) 1| +T¢ (3-11

Since the emissivity €(T) is a function of T, which is unknown, an
iterative solution is necessary. A trial T is selected, and then €, is chosen
at this value. Equation (3-11) is then solved for T}, and this value is used
to select € for the next approximation. The process is continued until
&(T)) and T, no longer change with further iterations.

ExAMPLE 3-3: Derive an expression for the radiation exchange be-
tween two uniform temperature concentric diffuse-gray spheres as
shown in figure 3—4.

This situation is more complicated than the parallel plate geometry
as the two surfaces have unequal areas and surface 2 can partially view
itself. The configuration factors for this case were derived in example
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FIGURE 3—4.-Energy quantities for radiant interchange between two concentric spheres.

9-13 and were found to be Fi_2=1, Fo_1=A,/A2, and F32=1— (A41]A2).
The basic heat balance equations (egs. (3—6) and (3-7)) are now written
for each of the two sphere surfaces

Q=4 I—E‘—; (@Tt—go.1) (3-12a)
Q1=41(go, 1 — Go, 2) (3-12b)
Qr=Ae 7o (0Tt = 0D (3-13a)
A A
Q=4 [ qo, z"Z:‘lIo. 1_( 1 _A_:) Qo, z]
=A1(—Go,1+ o, 2) - : (3-13b)

Comparing equations (3-12b) and (3-13b) reveals that @\=—@Q:, as
would be expected from an overall heat balance on the system. The four
equations (3-12) and (3-13) can be solved for the four unknowns qo,1,
o, 2, Q1, and Q:. This yields the net heat exchange (supplied to surface
1 and removed at surface 2)

o= Ar(T{—T9 (3-14)
14 [ 1 —1]
&(Ty) Azl €T2)

For a case when the spheres in example 3-3 are not concentric, all
the radiation leaving surface 1 is still incident on surface 2. The view
factor F,_, is again 1 and with the use of the same assumptions, the
analysis would follow as before, leading to equation (3-14). However,
when sphere 1 is relatively small (e.g., one-half the diameter of sphere 2)

323-003 O-65—6
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and the eccentricity is large, the geometric appearance of the system is
so different from the concentric case that using equation (3—14) would
seem intuitively incorrect. The error in using equation (3-14) is that it

‘was derived on the basis that g, qi, and g, are uniform over each of

A, and A,. These conditions are exactly met only for the concentric case.

EXAMPLE 3—4: Consider a long enclosure made up of three surfaces
as shown in figure 3-5. The enclosure is long enough so that the ends
can be neglected in the radiative heat balances. How much heat has to

Surface 11

Surface 3- “Surface 2

FIGURE 3-5.— Long enclosure composed of three surfaces (ends neglected).

be supplied to each surface (equal to the net radiative heat loss from
each surface) to maintain the surfaces at temperatures Ty, T2, and T3?

To solve this problem, write equations (3—6) and (3-7) for each of the
three surfaces

%= 1 ile, (0T}~ go,1) (3-15a)
%= do.s—F1-100,1—F1-20,2=F1-30,3 (3-15b)
(0Tt~ g0 (3-162)
Q_:.= go.2— Fa-100,1= F2-100,2= F2-300.3 (3-16b)
g—:= - 13 (@T4=go.3) (3-17a)
@ g s—Fs10.1— F3-200,2 = F3-20.3 (3-17b)

As
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The first equation of each of these three pairs of equations can be solved
for g, in terms of T and Q. These g,’s are then substituted into the second
equation of each pair to obtain

g(i_ -\ @&, l-e Q. l—e
€ Fi-y € ) AzF‘—z € A:;Fl—s €3

=(1—'Fl-])O'T‘:"F[_zO'T;-F]_:]O'T; (3-188)

—Q—‘Fz 1—e|+Q3(_1__F2_21—52)_@F2_2 1—€
€2 As

€3

=—F2_10’T'1‘+(1—Fz_z)GT;—Fz_:;O'Tg . (3"18b)

__Q_x_ I—GI_QE l—e 03 1 1"'53
Alps-l € Ast-z € +A3(€3—F3_3 €3 )

=—F3-1O'Tf—F3_zO'T£+(1—'Fa-a)O'T; (3-180)

Since the T"s are known, the €’s can be specified from surface property
data at their appropriate T values and these three simultaneous equations
solved for the desired Q values supplied to each surface. Note that the
solutions are only first approximations, because the radiosity leaving
each surface is not uniform as assumed. This is because the reflected flux
is not uniform. Greater accuracy can be obtained by dividing each of the
three sides into more surface elements.

Now that some familiarity with the radiant energy exchange equa-
tions has been achieved by looking at a few simple examples, the system
of equations will be written in a generalized form for an enclosure of
N surfaces.

33.1.1 System of equations relating surface heating Q and surface
temperature T.—The form of equations (3-18) indicates that the Qs
and Ts for an enclosure of NV surfaces can be related in a general system
of N equations. Equation (3-6) is solved for go, x, and this is substituted
into equation (3-7). (Note that g, ; is found by simply changing the sub-
script in the relation for go,x.) This results in the following form for
the kth surface, a result which is also evident from equations (3—-18):
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_Q - Q: l—e Q:(_}__ l—ek)
y Rk PR R e Py
- ‘_&Fk_,‘vl €N="'Fk_1O'T?"‘Fk-zO'Tg—
Ay €N

+(1’-Fk_k)0’T£— -t "‘Fk..NO'Tg,

A summation notation can be used to write this as

N 8k 1—¢\Q;_ &
p (:jz_pk_,—;j—i) Zf-jgl (81— Fi-s)o T} (3-19)

where corresponding to each surface, k takes on one of the values
1,2,. . ., N and 8y; is the Kronecker delta defined as

5 ={lwhenk=j
*#71 0 when k #j

When the surface temperatures are specified, the right side of equa-
tion (3-19) is known, and there are N simultaneous equations for the
unknown Q’s.

In general, the heat input to some of the surfaces may be specified,
and the temperature of these surfaces is to be determined. There are
still a total of N unknown Q’s and T’s, and equation (3—19) provides the
necessary number of relations. Since the values of € depend on tem-
perature, it is necessary to guess initially the unknown T’s. Then the
e values can be chosen, and the system of equations can be solved. The
resulting T values can be used to select new €’s, and the process can be
repeated until the T and e values no longer change upon further iteration.
Again, note that the results by this method will be approximate be-
cause the uniform radiosity assumption is not perfectly fulfilled over
each finite area.

EXAMPLE 3-5: Consider an enclosure of three sides, as shown in
figure 3-5. Side 1 is held at T, side 2 is uniformly heated with a flux
gz, and the third side is insulated. What are the equations to determine
Q[, Tz, and Ts?

The conditions of the problem give Qs/4.=gq: and Qs3=0. Then
equation (3-19) yields the following three equations where the unknowns
have been gathered on the left side:
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1 1 —-€
€1 (3]

)+F1-20'T2‘+F1-30'T3= (1—F,-)oT}:

+ @ Fi_2 1-e (3—-20a)
€2

-%Fz-l 1:61— (I—Fz-z)O'T;‘}' Fz-sUT:::—Fz-xO‘T:
1

— (l—Fz-z 1 “’) (3-20b)
€2 €2

—Q:F,_.-l-;—“-» Fao20Ti~ (1=Fa_q)aTi=—Fa_,oT?

l1—e
€2

+ QzF 3-2 (3-'200)

If €2 depends on temperature, an iterative procedure is needed where
a T, is chosen; then e:(T.) is specified, the equations are solved for T,
and the iteration is continued until €(T:) and T: no longer change.

33.1.2 Solution method in terms of outgoing radiative flux q,.—An
alternate approach for computing the radiative exchange within an
enclosure involves first solving for g, for each surface and then comput-
ing the Q’s or T"s. When sighting a surface with a radiation detector,
it is g, that is intercepted, that is, the sum of both emitted and reflected
radiation. For this reason, it is desirable in some instances to determine
the g, values as primary quantities. Of course, in the previous formulation
(section 3.3.1.1), the ¢,’s can be found from Q’s and T’s by using equation
(3-6).

When the surface temperatures are all specified, the set of simul-
taneous equations for g,'s is obtained by eliminating Qi’s from equations
(3-6) and (3-7). This yields the following equation for the kth surface:

’ N
o, k— (l—ék); Fk—jqn,j=€k0'T}: (3—21)
-]
To illustrate, for a system of two surfaces, equation (3—21) becomes

Go,1— (1 —€&)Fi11go,1 — (1 —€1)F1_2¢o, 2 = €10T?} (3—-22a)

Qo,2— (1—€)F2-190,1— (1 — &) F2_2g0, 2= &0T} (3—-22b)
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An alternate form of equation (3-21) is

N
S (85— (1—€)Fx-;10. ;= &0T} (3-23)

=

With the T’s given, the g,’s can be found from equation (3—23). Then,
if desired, equation (3—6) can be used to compute Q for each surface.

When Q is specified for some surfaces and T for others, equation
(3-23) is used for the surfaces with known 7 in conjunction with equation
(3—-7) for the surfaces with known Q, to obtain the set of simultaneous
equations for the unknown g,'s. Once g, is obtained for a surface, it can
be combined with the given Q (or T) and equation (3—6) can be used to
determine the unknown T (or Q). In a general form, if an enclosure has
surfaces 1, 2, . . ., m with specified temperature and the remaining
surfaces m+1, m+2, . . ., N with specified heat input, the system of
equations for the g,’s is from equations {3-23) and (3-7)

N
> [By—(1 —e)Fi-jlgoj=eoTt 1<ks=m (3-24a)

=

N
$ Gy—Fepans=2  mrl<ks<N (3-24b)
= .

Note that, for a black surface with Tk specified, equation (3—24a) gives
go.x=0T} so that the go,« is known, and the number of simultaneous
equations can be immediately reduced by one.

Surface 3
T3- 1000° R
(3 - 1“\

Surface 2
Perfectly
insulated
(2 =0. 8\\

o o e =
—

<Surtace 1
a1 - 1000 Btu/thritt)
Il =06

FIGURE 3-6. —Enclosure used in example 3-6.
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EXAMPLE 3-6: A frustum of a cone has its base heated, as shown in
figure 3—6. The top is held at 1000° R while the side is perfectly insulated.
Surfaces 1 and 2 are assumed gray and diffuse while surface 3 is black.
What is the temperature of side 1? How important is the value of e:?

By using the configuration factor for two parallel disks (see table A-1
in appendix A as a source for the F factor), it is found that F3_,=0.33.
Then F3_:=1—F;_,=0.67. From reciprocity AFi-a=AaF3-, and
AoF33=AF3_5, it is found that F;_3=0.147 and F;-;=0.13. Then
F1_z =1 —F1_3=0.853. From A|F1-2 =A2F2_1, F-_)_l =0.372. Finally,
Fia=1—Fs_,—F,_3=0.498. From equation (3-19) and by noting that
Q.=0 and 1 — & =0, the three equations can be written as

1(;—.%0=0'[Tf—0.853T;—0.147(1000)‘]
(1—0.6) _
—1000(0.372) 5 g =0~ 0.372T{ + (1 -0.498) T4 —0.13(1000) ]
—1000(0.33) Q-TO-%‘-)-+%=U[—O.33T:—O.67T3+ (1000)4]

These three equations can be solved for the unknowns T, T3, and Q5.
The result requested in the problem is T,=1310° R. Since Q:=0, all
of the terms involving & were zero so that & does not appear in the
simultaneous equations; hence, for this gray-diffuse analysis the emis-
sivity of the insulated surface is of no importance.

3.3.2 Matrix Inversion

When many surfaces are present in an enclosure, a large set of simul-
taneous equations such as equation (3—19) or (3-24) will result. These
equations can be solved using a digital computer along with standard
computer programs that can accommodate several hundred simultaneous
equations.

A set of equations such as equations (3-24) can be written in a shorter
form. Let the known quantities on the right side be Cy and the quantities
in brackets on the left side be ax;. Then the k equations can be written
as

N
E @kjGo, ;= Ck (3—25a)
j=

where
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8k — (1 — €)Fk—j ot 1sk=m
axj = Ci= (3—-25b)
8k — Fr-j :%,:‘ m+l<sksN

For an enclosure of N surfaces, the set of equations then has the form

a11Go, 1+ @12Go, 2t -+ @1jGe, T 4 ango, v =Ch
21Go, 1 + A22Go, 2+ * ‘+a2igo, jt+ -+ azngo, v =Cz2

............................. (3-26)

an1Go, 1 + An2Go, 2+ -+~ T aNjGo, ++ - -+ awgo, v=Cu

The array of ax; coefficients is termed the matrix of coefficients and is
often designated by a bracket notation

a an ayy
az1 azz azj
matrix a= [axs]® | q,, Ak .. A
an anz ayj

A method of solving a set of equations such as equations (3—26) is to
obtain a second matrix a~!, which is called the inverse of matrix a, that is,

P T TR
A A2 ... A 25 ... Aoy
matrix a= 'S [ @)= | - - - - e
& A i A ij A in
L_..dm A Ay A
(3~28)

In the inverse matrix there is a term &i; corresponding to each ai; in
the original matrix. The &’s are found by operating on the a’s in a way
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briefly described as follows: If the kth row and jth column that contain
element ai; in a square matrix a are deleted, the determinant of the
remaining square array is called the minor of element ax; and is denoted
by M. The cofactor of aiy is defined as (—1)**/M,;. To obtain the
inverse of a square matrix [ay], each element ay; is first replaced by
its cofactor. The rows and columns of the resulting matrix are then
interchanged. The elements of the matrix thus obtained are then each
divided by the determinant |ax;| of the original matrix [ai;]. The ele-
ments obtained in this fashion are the &4;. For more detailed information
on matrix inversion, the reader should refer to a mathematics text such
as reference 6. There are standard digital computer programs that will
numerically obtain the inverse coefficients &k from a matrix of ai
values.

After the inverse coefficients have been obtained, the unknown ¢,
values in equations (3-26) are found as the sum of products of &’s and
C's

qo1=AnCi+ A 2Co+- - -+ C+- - - + o vCx

qo,z=.dncx+&f2262+' . '+ﬂ216j+‘: ‘. '.+..dz‘vCN

(3—29a)
q.,,_g=dk1Cl+dszz+- -+ FiCi+- - -+ AnCy
or
N .
Go, k= 2 & iCj ((3—29b)

Therefore, the solution for each g, « is in the form of a sum of eaT* and
Q/A that the C’s represent, each weighted by an & coefhcient.

For a given enclosure the configuration factors Fi-; in equation
(3—-25b) remain fixed. If, in addition, the &’s are constant, then the
elements ax;, and hence the inverse elements .&/};, remain fixed for the
enclosure. The fact that the ) remain fixed has utility when it is
desired to compute the radiation quantities within an enclosure for many
different values of the 7"s and Q’s at the surfaces. The matrix need
be inverted only once; then equation (3-29b) can be applied for different
values of the C’s. These comments also apply to the system of equations
given by equation (3-19). After the inverse is taken, the Q’s can be
found as a weighted sum of the T’s.

‘3.4 RADIATION BETWEEN INFINITESIMAL AREAS
3.4.1 Generalized Net Radiation Method for Infinitesimal Areas

In the previous section the enclosure was divided into finite areas.
The accuracy of the results is limited by the assumptions in the analysis
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that the temperature, and energy incident on and leaving each surface,
are uniform over that surface. If these quantities are nonuniform over
part of the enclosure boundary, the boundary surface must be subdivided
until the variation over each area used in the analysis is not too large.
It may be necessary to carry out several calculations in which succes-
sively smaller areas (and hence more simultaneous equations) are used
until the solution no longer changes significantly when the area sizes
are further diminished. In the limit, the enclosure boundary or a portion
of it can be divided into infinitesimal parts; this will allow large variations
in T, g, qi, and ¢, to be accounted for.

The formulation in terms of infinitesimal areas leads to heat balances
in the form of a set of integral equations. By using both exact and approxi-
mate mathematical techniques that have been developed for integral
equations, it is sometimes possible to obtain a closed-form analytical
solution. When it is not possible to obtain an analytical solution, the
integral equations can be solved numerically. In the case of a numerical
solution, the solution method is similar to that used in the previous dis-
cussion dealing with finite areas.

Consider, as before, an enclosure composed of N finite areas. These
_ areas would generally be the major geometric divisions of the enclosure
or the areas on which a specified boundary condition is held constant.

1

FIGURE 3-7.—Enclosure composed of N discrete surface areas with areas subdivided into
infinitesimal elements.
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Each of these areas is further subdivided into differential area elements,
as shown for two typical areas in figure 3—7. As before, throughout the
following analysis the surfaces will be considered diffuse gray. The addi-
tional restriction is now made that the radiative properties are independ-
ent of temperature.

A heat balance on element dA, located at position 7« gives

@x(Te)= go, x(Tx) — qi, k(F) (3-30)
The outgoing flux is composed of emitted and reflected energy
o, k(Fx)= &xaT4(Fi) + (1 — €x)qi, x(Tx) (3-3D)

The incoming flux in equation (3—31) is composed of portions of the
outgoing fluxes from the other area elements of the enclosure. This is a
generalization of equation (3—3) in the respect that over each finite sur-
face, an integration is performed to determine the total contribution that
the local Aux leaving that surface makes to the quantity g;, &

dAkgs, k(7e) =L Go, 1 (F1)dF ay—ax(Fy, Fi)dA,
o j Qo (72 dF i _ g (72, Fe)dA
k

et L don(Fv)dF av-ax(Fv, F)dAy  (3-32)
N

The second integral on the right is the contribution that other differential
elements d4} on surface A; make to the incident energy at dAx.

By using reciprocity dAjdFg-ax = dAxdF a-4;, a typical integral in
equation (3-32) can be transformed to give

L Qo j (7)) dF aj-ax (75, Fk)df“j:j; Go.;(75) dF ak—-aj (Tj, Fi)dAx
'j j

By operating on all the integrals in equation (3—32) in this manner, the
dAi will divide out of the equation, and the result becomes

N
g, k(Te) =, . o, j (73) dF we-a; (75, Fi) (3-33)

j=174j
Equations (3-31) and (3-33) provide two different expressions for

gi, k(7). These are each substituted into equation (3—30) to provide two
expressions for g (7x) comparable to equations (3—6) and (3—7)
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Qe (Fe) =‘1i;€k [oT4(Fe) — qo, k(Fx)] (3-34)
N
qx (Fe) = qo, x (Fic) — 2 . o, j(F;) dF ax_aj(7j. Fic) (3-35)
= J

As shown by equation (2-10), the differential configuration factor
dF ax_q; contains the differential area dd;. To place equation (3-35) in a
more standard form where the variable of integration is explicitly shown,
it is convenient to define a quantity K(7j, 7x) by

dF ax_q (75, T)

Then equation (3—-35) becomes the integral equation
N
gi(Fe) = qo,x(F) = > | o, s(F)K (. Fie) dA; 3-37)

jmi JAj

The quantity K(Fj, 7x) that appears under the integral sign with the de-
pendent variable, such as in equation (3~37), is called the kernel of the
integral equation.

As in the previous discussion for finite areas, there are two paths that
can now be followed:

(1) When the temperatures and imposed heat fluxes are important,
equations (3-34) and (3-35) can be combined to eliminate the variables
go- This gives a set of simultaneous relations directly relating the surface
temperatures T and the imposed heat fluxes q. Along each surface area,
either the T or the g will be specified by the boundary conditions. The
remaining unknown T’s and ¢’s can then be found by solving the simul-
taneous relations.

(2) Alternately, when g, is an important quantity, the unknown q’s
can be eliminated by combining equations (3—34) and (3-35) for each
surface that does not have its ¢ specified as a boundary condition. For a
surface where g is known, equation (3—35) can be used to relate the g,’s to
each other directly. This yields a set of simultaneous relations for the
go's in terms of the known ¢’s and T"s that are specified by the boundary
conditions. After solving for the g,’s, equations (3—34) can be used, if
desired, to relate the ¢’s and T"s where either the g or T will be known
at each surface from the boundary conditions.

Each of these procedures will now be examined.

34.1.1 Relations between surface temperature T and surface heat-
ing q.—To eliminate the g, in the first method of solution, equation (3—34)
is solved for qo, k(7x), giving
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Qo, K(Fx)= T Fi) — 1 :k& k() (3-38)

Equation (3—-38) in the form shown and also with & changed to j is then
substituted into equation (3-35) to eliminate g, x and g,, ;, which yields

- N ]1— .
qk(rk)—z equ qi(Fi)dF ai-aj(Fj, Fe)= o T(Fx)
J

€5 j=

N
- ’ oTHF)dF ax-ay(Ts, 7)  (3-39)
=1 J4;

Equation (3-39) directly relates the surface temperatures to the heat
fluxes supplied to the surfaces.

EXAMPLE 3-7: An enclosure of the general type in figure 3-5 is com-
posed of three plane surfaces, and for simplicity is infinitely long so
that the heat transfer quantities do not vary with length. Surface 1 is
heated uniformly and surface 2 is at a uniform temperature. Surface 3
is black and at zero temperature. What are the governing equations
needed to determine the temperature distribution over the perimeter
of surface 1?7

With T2=0, es=1, and the self-view factors dF4-4» =0, equation
(3—39) can be written for the two plane surfaces 1 and 2 having uniform
g1 and T: as

@_l-e f @(F)dF a1—a(Fe, 71)= o THF)
€ € As

—oT} L dF ai-2(f2, 7)) (3-40a)

q2(73) 1—¢
272 _a
€ € Ay

dF g2_ay(7y, F2)= O'Tg

— | oT{H)F a-ai(F, 72) (3—40b)

41
A similar equation for surface 3 is not needed since equations (3—-40) do

not involve the unknown g3(73) as a consequence of =1 and T;=0.
From the definitions of F factors,

dFd)-dz’—‘Fdl—z and dFdz-dx'—-‘Fdz-l

Ag Al
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equations (3-40) simplify to the following relations where the unknowns
have been placed on the left:

N s - T
0Tf(r.)+—-€z—ez£ q2(Pe)dF a1 -aalT2, l’1)=0’T§‘Fm—z+% (3—-41a)
z 1

1"‘61
Fa-
a 271 (3-41b)

j oTHA)MF e2-ar(Ty, 72)+ ___q:(ﬁz)___ oTi+q
Ay X 2

Equations (3-41) can be solved simultaneously for the unknown dis-
tributions Ty (7;) and ga(7:). Some methods for solving such a set of integral
equations will be discussed in section 3.4.2.

3.4.1.2 Solution method in terms of outgoing radiative flux q,. — A second
method of solution results from eliminating the qx(Fi) terms from equa-
tions (3—34) and (3—35) for the surfaces where qx(Tx) is unknown. This pro-
vides a relation between g, and the T variation specified along a surface

N
Qo x(F) = &OTHF)+ (1 —€) Y |  qo, (F)dF ak-ajl7js T
j=1 94 (3-42)

When the heat supplied to surface k, g«(7i), is known, equation (3—35)
can be used directly to relate g« and go. The combination of equations
(3-42) and (3-35) thus provides a complete set of relations for the un-
known ¢,’s in terms of known T”s and ¢’s.

This set of equations for the go’s will now be formulated more explicitly.
In general, an enclosure can have surfaces 1, 2, . . ., m with specified
temperature distributions. For these surfaces, equation (3-42) is utilized.
The remaining N—m surfaces m+1, m+2,. . ., N have an imposed
heat flux distribution specified. For these surfaces equation (3-35) is
applied. This results in a set of N equations for the unknown g,
distributions

N .
o, K{Tk)— (1 — €x) 2 L o, AT)AF aic-a(T5, )= exaTHri)

=

l<sk<sm (3-43a)

N
d0s(F) =3 [ (B dF - ) = a7

Jj=1

m+l<sksN (3—43b)

After the g,'s are found, equation (3-34) is applied to determine the
unknown q or T distributions,
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qe () =l—ii‘-€: [oT4(7) —gox(F)] 1<sk=m  (3-#4a

e:k ac(Fe) + qo, k(Fe) m+l<sk=m  (3-44b)

oTt (7)) =

3.4.1.3 Special case when imposed heating q is specified for all surfaces.—
There is an interesting special case when the imposed energy flux g is
specified for all surfaces of the enclosure and it is desired to determine
the surface temperature distributions. For this case the use of the
method of the previous section, where the g,'s are first determined
(section 3.4.1.2), has an advantage over the method given by equation
(3-39) where the T’s are directly determined from the specified ¢'s
(section 3.4.1.1). This advantage arises from the fact that equation (3—43b)
is independent of the radiative properties of the surfaces. This means
that for a given set of ¢’s the g’s need be determined only once by
writing equation (3-43b) for each of the surfaces. The temperature
distributions are then found from equation (3—44b), which introduces
the emissivity dependence. This would have an advantage when it is
desired to examine the temperature variations for various emissivity
values when there is a fixed set of g’s.

In the case when the surfaces are all black, then &,=1 and equation
(3-44b) becomes

oT4(F) iack = Go, x(Ti)

Since the go, s are independent of the emissivities, these go,«’s are also
valid for surfaces where ex % 1. The solution in equation (3—44b) can
then be written as

- 1- - -
oT4(F) = - St gk (Fe) + T4 (Fe) prack (3-45)
k

This relates the temperature distributions in an enclosure for e # 1
to the temperature distributions in a black enclosure having the same
imposed heat fluxes. Thus, once the temperature distributions have been
found for the black case, the fourth-power temperature distribution
oTi(7) for gray surfaces are found by simply adding the term
[(1— ex)/ex] gu(Fic)-

To this point, a number of formulations of the governing equations of
radiation interchange within an enclosure have been made. In table 3-1
the relations that have been derived for finding quantities of interest, such
as Q, T, and ¢, on various surfaces in terms of given quantities, are
summarized for convenience.
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TaBLE 3-1.~ RELATIONS BETWEEN ENERGY FLUX AND TEMPERATURE IN DIFFUSE-GRAY

ENCLOSURES
Boundary conditions Desired quantities Equation
Finite areas | T: on all surfaces Q« 3~19)
1<k<N
Go, & (3-23)
Qx on all surfaces T, (3~-19)
1€k<N
Teforlsk<m Qvforl=k<sm (3-24) and (3-6)
Ocform+1<k<N Trform+1<ksN or (3-19)
Qo. x 3-2%)
Infinitesimal { T on all surfaces ar (3-39)
areas 1€k<N
Go. k (3-42)
qx on all surfaces Te (3-35) and
1<k (3—-44b)
Qe k (3—35)
Teforlsk=<m geforl<k=m (3—39) or (3-43)
geform+1<k<N Txform+1<k=<N and (3~44)
Qo, x {3—~43a) and
(3—43b)
Go.xforl<k=N geforl<k=<m (3-44a)
Teforl<ksm Teform+1<k=<N (3-44b)
g form+1<k<N
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ExXAMPLE 3-8: A relatively simple example of a heated enclosure is a
circular tube shown in figure 3-8 open at both ends and insulated on the
outside surface (ref. 7). (1) For a uniform heat addition along the tube
wall and a surrounding environment temperature of 0° R, what is the

+ Surface 1 I,-Sun‘ace 2 (inside
\Ty=0or T, / surtace of tube wall}
\

NN IA IR

\ — = 7 4 /
r 7 /1 !

\
\

(@

4—
12—

qo. z(ﬂDVQZ

| ! | ]
1 2 3 4
XD

(a) Geometry and coordinate system.
{b) Distribution of g, on inside of tube for L(D=4.

FIGURE 3-8.—Uniformly heated tube insulated on outside and open to environment at both
ends.

temperature distribution along the tube? (2) If the surroundings are at
temperature T., how does this influence the temperature distribution?

(1) Since the open ends of the tube are nonreflecting, they can be as-
sumed to act as black disks at a specified temperature of 0° R. Equation
(3-44b) is then used for these two disks to find their g,. With e;=¢;=1,
equation (3—44b) gives

Go,1=qo,3=0Ti=cTi=0

323-003 O-69—7
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Consequently, the summation in equation (3-43b) will provide only
radiation from surface 2 to itself. Since the tube is axisymmetric, the two
differential areas d4x and dA? can be taken as rings, and they are
located at x and y, respectively. For convenience, all lengths are non-
dimensionalized with respect to the tube diameter; then equation
(3—43b) yields

w028 =[]

N=0

{
Go.2()dF g—an(Im—€l) = g2 (3-46a)

where £¢=x/D, n=y/D,1=L|D, and dF 4-#(|n—§£|) is the configuration
factor for two rings a distance |n — ¢£| apart and is given by (for source see
table A-I in appendix A)

n—gp+3 In—¢

Absolute value signs are used on 1 — £ because the configuration factor
depends only on the magnitude of the separation distance between the
rings. When |n—¢| =0, dF =dn, and this represents the view factor
from a differential ring to itself. Equation (3—46a) can be divided by the
constant gz, and the solution for the dimensionless quantity go,2(£)/qz
can be found by numerical or approximate methods for solving linear
integral equations. A discussion of these methods will be given in sec-
tion 3.4.2. The resulting go, 2(£)/q2 distribution is shown in figure 3—8(b)
for a tube 4 diameters in length. From equation (3—44b), the distribution
of temperature to the fourth power along the tube is given by

l—e

aTié)= g2+ o, 2(£)

Since q. is a constant, the distribution T3§(¢) has the same shape as the
distribution go,2(£). The wall temperature is high in the central region
of the tube and low near the end openings, where heat can be radiated
easily to the low-temperature environment.

(2) Now consider the case where the environment is at T. rather than
at zero. The open ends of the cylindrical enclosure can be regarded as
perfectly absorbing disks at T.. The integral equation (3—43b) now yields

!
qo. z(f)—f" , o, 2N)dF 44— gt — €]) — OTF ag-1(€)— 0T Fag-a(l—§) = q2

where Fge-1(£) is the configuration factor from a ring element at § to
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disk 1 at £=0, that is,

1
£+3

Fa-l)= e~ §

Since the integral equation is linear in the variable go,2(£), let a trial
solution be in the form of a sum of two parts where for each part either
T.=0o0rqg=0

Qo 2(6)= qo, 2(§)|T¢-0+ qo, z(f)lq’-o

Substitute the trial solution into the integral equation to get

i
o, Dl rma+ Qo s uma— [ o8l 0 dFse-aslin =€)

t
- fn-o o, 2(M)|gs=0 dF g -a5(Im — E)—oTiFa () —oTF gl — €)=gq2
For T.= 0, equation (3—46a) applies; subtract this equation to give

{
Qo, 2(5)'&-0—L_0 9o, 2("1)'«-0 dFdl—d"(]"l—fl)
—O'T:F“-l(f) —U'T:Fu-a([-f) =0

As can be verified by direct substitution and then integrating, the solu-
tion is

9o, g, =0=0T¢
This would be expected physically for an unheated surface in a uniform

temperature environment. The temperature distribution along the tube
is found from equation (3—44b) as

l—e
€

oTyé) = g2+ go, 2(€) |T,-o+¢1o.2(§)‘q,-0

1—
O'Ti(f)"_"";ez G+ qo, 2(&) |remo+ T8

where go,2(£)|r,=0 was found in part (1) of this example. The super-
position of an environment temperature has thus added a oT} term to
the solution for oT4£) found previously for Te=0.
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EXAMPLE 3-9: This example will consider the emission from a long
cylindrical hole drilled into a material that is all at uniform temperature
T (fig. 3-9). The hole is assumed sufficiently long that the surface at the
bottom end of the hole can be neglected in the radiative heat balances.
The environment outside the hole is taken to be at 0° R. If a position is
viewed at x on the cylindrical side wall of the hole, the energy leaving
the wall is composed of the direct emission plus the reflected energy, the
total being the quantity g,(x). An apparent emissivity is defined as
€a(x) = go(x)/oT*. The objective of this analysis will be to determine how
€a(x) is related to the actual surface emissivity € where € is constant
over the side of the hole. The integral equation governing the radiation
exchange within the hole was first derived by Buckley (refs. 8 and 9) and

T
k///‘////l Ll bk L L& 7.
}-—y—— D q,(%
T-0 %

K/// T T NTT T I 7T Y

|
I
(a)

X

Emissivity,

€, aguD)foT®

1] 1 2 3 4 5
X0

(a) Geometry and coordinate system.
(b) Apparent emissivity of cylinder wall.

FIGURE 3-9. — Radiant emission from cylindrical hole at uniform temperature.
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later by Eckert (ref. 10); both investigators obtained approximate ana-
lytical solutions. The results were later carried out numerically to
greater accuracy by Sparrow and Albers with a digital computer (ref. 11).

The opening of the hole can be approximated by a perfectly absorbing
(i.e., black) disk at zero temperature; then from equation (3—44b) (be-
cause €=1 and T=0 for the opening area) the g, for the opening disk
is zero. Hence, the governing equation for the enclosure is equation
(3—43a) written for the cylindrical side wall and including in the sum-
mation only the radiation from the cylindrical wall to itself. As in ex-
ample 3-8, the configuration factor is that for one ring of differential
length on the cylindrical enclosure exchanging radiation with a second
ring at a different axial location, as given by equation (3—46b). Equation
(3—43a) then yields

g(§)—(1—e) J:o go(n)dFsg-an(|n—E|) =Tt (3-47)

where &=x/D, m=y/D, and dFu-a(|n—¢|) is given by equation
(3—-46b). After dividing by oT* which is constant, the apparent emissivity
is found to be governed by the following integral equation:

()~ (-0 clndFu-alln—th=c  6-49

The solution of equation (3-48) was carried out for various surface
emissivities €, and the results for €, as a function of location along the
hole are shown in figure 3—9(b). The radiation leaving the surface
approaches that of a blackbody as the wall position is increased to greater
depths into the hole. At the mouth of the hole, &a= /€ as shown by
Buckley (refs. 8 and 9).

EXAMPLE 3-10: What are the integral equations governing the radi-
ation exchange between two parallel opposed plates finite in one dimen-
sion and infinite in the other as shown in figure 3-10? Each plate has a
specified temperature variation which depends only on the x- or y-coordi-
nate shown, and the environment is at zero temperature. |

From the discussion in example 2—4, the configuration factors between
the infinitely long parallel strips d4, and dA: are

1@
2 Ty el

1, .
dFdl_¢z=-2- d(sin ¢) = dy

1 at
2 (G- &

dF p-a1=
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Tenvironment =0 L

(a)

Insulation -

AN AN A/ 3
020%2%% %% 0 %!

b !

(a) Parallel plates of width L and infinite length.
(b) Coordinates in cross section of gap between parallel plates.

FIGURE 3-10. —Geometry for radiation between two parallel plates infinitely long in one
direction and of finite width.

The distribution of heat flux added to each plate can be found by applying
equation (3—39) to each of the plates. As in examples 3-8 and 3-9, the
environment at T=0 does not contribute anything since it provides an
effective emissivity of unity and a temperature of zero at the edge
opening between the plates. The governing equations are then

qlx) l—e j"-fz 1 a? _
€ €2 ~1{2 qZ(y) 2 [(y—x)2+ a2]3/2 dy"" O'T‘l‘(x)
L2 . 1 a?
—_ o O'Tz(.}’) 5 [(y—x)2+a2]3/2 dy (3—49a)
ey) l—ea J'L/’ 1 a? .
€ & Jous Qi (x) 2 [(y—x)2+a2]3/2dx oTi(y)
L2 .

- oT#(x) a

1
w2 ST—nrrag & (G-
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An alternate formulation can be obtained by applying equation (3—43a).
This yields the following two equations for g,,,1(x) and g,,2(y):

L2 1 a2
o, 1(x) — (1 —¢€) J.-uz go,2(y) ‘2' f(y—x)'+a’]3/= dy=eaTi(x)
(3-50a)
/
@)= (1=e) [ a0i(®) § Fr—sreg g dv=eeoTi0)
(3-50b)

After the g,’s are found, the desired q;(x) and q2(y) are obtained from
equation (3—44a); they are

= [0TH) —go.1(4)] (3-51a)

a(x)=7

a() =12 [0T4(5) = 40.1(»)] (3-51b)

3.4.2 Methods for Solving Integral Equations

The previous examples have revealed that the unknown wall heat
fluxes or temperatures along the surfaces of an enclosure are found from
the solutions of single or simultaneous integral equations. The integral
equations are linear; that is, the unknown ¢, g, or T* variables always
appear to the first power (note that T* is considered as the variable
rather than T). For linear integral equations there are a number of
analytical and numerical solution methods that can be utilized. These
are discussed in standard mathematics texts (e.g., chapter 4 of ref. 6).
The use of some of these methods will now be discussed as applied to
radiation probiems, and some examples will be given.

3.4.2.1 Numerical integration yielding simultaneous equations.—In
most instances the functions inside the integrals of the integral equations
are complicated algebraic quantities. This is because these functions
involve a configuration factor which, for most geometries, is not of a
simple form. There is generally little chance that an exact analytical
solution can be found. A numerical solution must then be attempted in
most cases. The integrals are expressed in finite difference form by divid-
ing each surface into a grid of small finite increments. The result is a
set of simultaneous equations for the unknown quantities at each incre-
mental position. This procedure is best illustrated by a specific example.
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EXAMPLE 3-11: Referring to the integral equation in equations (3+46),
derive a set of simultaneous algebraic equations to determine the go, 2
distribution for a length [=4.

For simplicity, divide the length into four equal increments (An=1),
and use the trapezoidal rule for integration. When equation (3—46a) is
applied at the end of the tube where x=0, there is obtained

Go.2(0) — [3g0.2(0)K(10—0]) + go,2(1)K(|1—0]) + g0,2(2)K(|2—0])
+qo,2(3)K(13—0]) +1g0.: (HK(14-0D1(1) =g (3-52)
The quantity included in brackets is the trapezoidal rule approximation
for the integral. The quantity K(|n—x|)=dF (In—=x|)/dn is the alge-
braic expression within the braces of equation (3—46b). The go,2(0)
terms in equation (3-52) may be grouped together to provide the first of
equations (3-53). The other four equations of the set are obtained by

writing the finite difference equation at the other incremental positions
along the cylindrical enclosure

40,2(0) (1= 4K(0)] = gu, 2(DK(1) = o, 2(DK(2) — g0, 2(3)K(3) )
—1¢o,2(4)K(4) =4¢:

— 340, 2(0)K(1) + o, 2(1) [1=K(0)] = o, 2(DK(1)
— 4o 2(3)K(2) — 40,2 (D)K(3) =

—4g0,2(0)K(2) — go, 2(1)K(1) + go,2(2) [1 = K(0) ]

33
_40,2(3)[((1) —iqo‘z(‘t)K(z) =q L(S—D )

—1q0.2(0)K(3) = go,2(1)K(2) — g0, 2(2)K(1)
+¢0.2(3) [1 —K(0)] g5, 2 (4)K(1) =

— 40, 2(0)K(4) — g0, 2(1)K(3) — o, 2(2)K(2) — g0, 2(3)K(1)
+ g0, 2(4) [1 —1K(0) ] = gy

These equations are solved simultaneously for the unknown ¢, values at
the five surface locations. From the symmetry of the configuration and
the fact that g. is uniform along the enclosure, it is possible in this
instance to simplify the solution by using the equalities go, 2(0) = go, 2(4)
and 40,2(1) =(Io.2(3)~

In practice a set of equations such as equations (3-53) is first solved
for a moderate number of increments along the enclosure. Then the
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increment size is reduced, and the set of equations is solved again. This
process is continued until sufficiently accurate g, values are obtained.
This procedure would generally be programed on an electronic com-
puter in terms of an arbitrary increment size.

Equations (3-53) were derived using the trapezoidal rule as a simple
numerical approximation to the integrals. Other more accurate numeri-
cal integration schemes can be used which may reduce the number of
increments required to provide sufficient accuracy in a given problem.

One precaution should be noted. The quantity go, jdFax-¢ may, in
certain instances, go through rapid changes in magnitude because of the
geometry involved in the configuration factor; for example, dFax-q; may
decrease very rapidly as the distance between ddi and dd; is increased.
This may mean that an integration approximation such as Simpson’s
rule will not be very accurate since the shape of go, dFax-4 may not
be approximated well by passing a parabola locally through the func-
tion. Care should be taken in selecting an integration scheme that can
approximate well the general behavior of the functions involved.

Example 3-11 contained only one integral equation. The situation
described by equations (3—49) involves two integral equations. Sur-
faces 1 and 2 can both be divided into increments, and the equations
can be written in finite difference form at each incremental location.
This will yield a set of simultaneous equations equal to the total number
of chosen positions on both plates, and the equations can then be solved
simultaneously for the g;(x) and ¢:(y) distributions.

Another way of solving the two integral equations numerically is by
iteration. With T;(x) and T:(y) specified, the right sides of the equa-
tions are known as functions of x and y. Starting with equation (3—49a),
a distribution for ¢:(y) is assumed as a first trial. Then the integration
can be carried out numerically for various x values to yield ¢:(x) at
these x locations. This ¢ (x) distribution is then inserted into equation
(3-49b) and a ¢ (y) distribution is determined. This g (y) is then used
to compute a new ¢ (x), and the process is continued until ¢:(x) and
¢ (y) are no longer changing as the iterations proceed.

3422 Use of approximate separable kernel.—In an integral equa-
tion such as equation (3—46a), the solution can sometimes be simplified if
the kernel is of a separable form, that is, equal to a product (or sum of
products) of a function of 7; alone and a function of ri alone. It is re-
called from equation (3—-36) that the kernel is

K(5j, 1) = dF ax-qi (73, i) /dA;

For a separable kernel, the function of ri can be taken out of the inte-
gral, thereby simplifying the integration. The general theory of integral
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equations with separable kernels is given in the mathematics text (ref. 6).
Generally, for radiation problems K will not be in a separable form.
However, it may be possible to find a separable function that closely
approximates K and can thus be substituted into the integral equation
to provide a simplification.

Buckley (refs. 8 and 9) demonstrated that an especially useful form
for a separable kernel is an exponential function or series of exponential
functions. With this type of kernel, it is possible to change the integral
equation into a differential equation, and sometimes an analytical solution
can be obtained. This will be demonstrated in example 3-12. There is a
mathematical point that should be mentioned here. The process of chang-
ing the integral equation into a differential equation requires taking de-
rivatives of the approximate separable kernel. Even though the separable
function may approximate the exact kernel fairly well, the approximation
of the derivatives may become poor especially when higher derivatives
are taken. The use of the separable kernel will now be demonstrated
with an example.

EXAMPLE 3-12: Determine go,2/qz from equation (3—46a) by use of
an exponential approximate separable kernel (ref. 7).
The governing equation is

%.2(£) 1 go.2(m) _ —
228 [ @20 g(jn—g))am=1 (3-54a
where

K(ln—¢)=1- In(-;ilg-;-z%.{l.nl—s/z (3-54b)

The K(|n—£&|) is plotted in figure 3-11, and it is reasonably well approxi-
mated by the function e-2"-¢/, When the approximate kernel is sub-
stituted into equation (3-54a), the part of the function depending on £
can be taken out of the integral to give the result

qo.z(f)_e_zé ff %,2(7') ¢2n dn — e f’ Q.o.z(n) e dn=1
92 o @ £ Q2
(3-55)

By differentiating equation (3-55) twice, the integrals can be removed
and the following differential equation obtained

p) Qo.2(§)

2 1 _
e 4

e e = g g e e am. o A+ A £ . b s e s en e v v trn taa mem n e
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1o

Kernel, K

FI1GURE 3~11. —Exponential approximation to configuration factor kernel for cylindrical
enclosure.

This has the general solution, obtained by integrating twice,
ﬁ’%ﬂ=—2§2+ Cié+C (3-56a)

To obtain C, and C;, two boundary conditions are needed. From sym-
metry one boundary condition is

o(22)
—Ll=9 at £=

d§

PO e~

which yields C,=2.. To determine C,. a boundary condition can be ob-
tained from equation (3-55) by evaluating it at £=0 and £ =/ and then
utilizing the fact that g,,2(0) = ¢,, 2({) to obtain the condition

[ 20200 o g e [ 2200 g

[} [ qz

Inserting q,.2/q.=—2£%+2l£ + C; and integrating yield C.={+ 1. With
C, and C; thus evaluated, the final result for g,,:/g: by the separable
kernel method is the parabola
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2281414280 ) (3-56b)

More generally, the boundary conditions to evaluate C, and C; could
have been obtained even in an asymmetric case by evaluating the
integral equation at both boundaries x=0 and x=/. This yields from
equation (3-55)

Qo,z(o)_fl(h,z(‘fl) —2n
¢ [ qz e~ dmr=1
90. 2(1)_8_21 J‘l 90.2(!!) ezn dn=l
q2 ] Q2

Then go, 2/g: from equation (3-56a) is substituted into these two bound-
ary conditions. After integrating, two simultaneous equations result for
C, and C., leading to the same solution as before. The advantage of
previously using the symmetry condition was only algebraic simplicity.

3.4.2.3 Approximate solution by variational method.— As mentioned
in reference 6 (p. 495), an integral equation of the form

(€)= f’ K(&, m)e(n)dn+G(£) (3-57)

can be solved by variational methods. A restriction is that K(£, ) be
symmetric, that is, K is not changed when the values of ¢ and 7 are
interchanged. The kernel of equation (3—-54b) is an example of a sym-
metric kernel since, because of the absolute value signs, it is evident

that K(|n—¢|) =K(|é—m]).

The variational method depends on the use of an auxiliary function that
is related in a particular way to the integral equation given by equation
(3-57). This auxiliary function is given by

b (b ]
i=[ [ ke, me(@e(mdedn— [ o)1z +2 [ w£)6(2)d
(3-58)

The significance of the J function is that, when the correct solution for
¢(€) is found, J will have a minimum value.

The procedure for obtaining an approximate solution is to let ¢(£) be
represented by a polynomial with unknown coefhcients,
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eO=vot+vié+yE+- - - +yaf" (3-59)

This polynomial is substituted into equation (3-58), and the integration
is carried out. If K is so complicated algebraically that the integration
cannot be performed analytically, the method is not practical. After the
integration is carried out, the result is an analytical expression for J as
a function of Yo, %1, ¥2,. . ., ¥a. These unknown coefficients are then
determined by differentiating J with respect to each of the individual
coefficients and setting each result equal to zero, that is, dJ/dvo=0,
8J1oyi=0, . . ., 3J/0va=0. This yields a set of n+1 simultaneous
equations for the n+1 unknown coefficients. By differentiating J in
this manner and setting the differentials equal to zero, the coefficients are
found that make / a minimum value; thus the most accurate solution to

n
the integral equation of the assumed form ¢(x) = 2 yjxi is found.
=
This method has been applied for radiation in a cylindrical tube in
reference 7 and radiation between parallel plates of finite width and

infinite length in reference 12.

3.4.24 Approximate solution by Taylor series expansion.—The use
of a Taylor series expansion method for solving a radiation integral
equation was demonstrated in references 13 and 14. The physical idea
that motivates this method of solution is that the geometric configuration
factor can often decrease quite rapidly as the distance between the two
elements exchanging radiation is increased. This means that the radiative
heat balance at a given location may be significantly influenced only by
the radiative fluxes leaving other surface elements in the immediate
vicinity of that location.

As an example, consider the type of integral equation in equation
(3-54). The function of K(|n—¢£|) decreases rapidly as n—¢ is in-
creased as shown in figure 3-11. Then, if it is assumed that the im-
portant values of 1 are when 7 is close to the location £, the function
G.2(m)/qz is expanded in a Taylor series about ¢

o, 2 Go, 2
Qo,z(n)=Qo.z(Q+(n_§) d(‘?z) +(")_§)2 (Qz) + ...
q: qz . dé e 2! dgt ¢

(3-60)

The derivatives in the Taylor expansion are evaluated at ¢ and hence do
not contain the variable 7. This means that, when equation (3-60) is
substituted into equation (3-54a), the derivatives can be taken out of
the integrals to yield
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go,2(£)  qo.2(§) [!
~228) [ K(ln—¢l)n

qz
~ |22 [ =K (m—gDdn

n

The integrations are then carried out; if this cannot be done analytically,
the method is not of practical utility because it is as easy to carry out a
numerical solution of the exact integral equation as of equation (3-61).
If the integrals can be carried out analytically, equation (3—61) becomes a
differential equation for g, 2(£)/q:, which can be solved analytically or
numerically if the boundary conditions can be specified. The boundary
conditions can be derived as illustrated in reference 14 from the physical
constraints in the system; for example, symmetry or an overall heat
balance. This method is probably of little value for enclosures involving
more than one or two surfaces.

In the past four sections, methods h_ave been discussed for solving
single or sets of integral equations by numerical methods and by some
approximate analytical methods. The analytical methods are probably
of value only when the integral equations are relatively simple. In
almost all practical cases the numerical method weuld be resorted to.
There are a few instances where approximate or numerical solutions
are not required since the radiation exchange integral equation has an
exact analytical solution. One of these cases will now be discussed.

3.4.2.5 Exact solution of integral equation for radiation from a spher-
ical cavity. —The radiation from a spherical cavity, as shown in figure
3-12(a), was analyzed by Jensen (ref. 15), discussed by Jakob (ref. 3),
and further treated by Sparrow and Jonsson (ref. 16).

The spherical shape leads to a relatively simple integral equation
solution because there is an especially simple geometrical configuration
factor between elements on the inside of the spherical cavity. The con-
figuration factor between two differential elements d4; and dA, shown
in figure 3—12(b) is

dFdj—dk=E)'s-E;:§zo_s&dAk (3-62)

Since the sphere radius is normal to both elements d4; and ddx, the
distance between these elements is given by
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y i"dA))

~Ay {spherical cap
/' covering cavity

(b

(a) Spherical cavity with diffuse entering radiation ¢, and with surface at uniform
temperature T;.
(b) Area elements on spherical surface.

FIGURE 3-12. — Geometry involved in radiation within spherical cavity.

S=2R cos 8;=2R cos Bk
Then equation (3—62) becomes

_ g4,
dFg-ax =715 (3-63)

If, instead of an infinitesimal area dd, the element d4; exchanges with
the finite area A, then equation (3—-63) becomes
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1 __Ax
Faj-x= 47R? J;k ;dAk " 4wR? (3-64)

Equation (3-64) is independent of the area element dA;; hence, dd;
could be replaced by a finite area 4; so that

A _Ax

Fj'k=41rR2_A,

(3-65)

where 4, is the surface area of the entire sphere.

Consider the spherical cavity shown in figure 3-12(a). The cavity
surface has a temperature distribution Ti(d4,) and has a total surface
area A4;. The spherical cap that would cover the cavity opening has an
area A;. Assume there is diffuse radiative flux g. (per unit area of A3)
entering from the environment through the cavity opening. The g can
be variable over A;. It is desired to compute the radiation intensity
i'(d4}) leaving the cavity opening at a specified location and in a speci-
fied direction, as shown by the arrow in figure 3-12(a). The figure shows
that the desired intensity will result from the flux leaving the element
dA¥* and will equal go, 1(d4})/m where the factor m arises from the re-
lation between hemispherical flux g, and!intensity i'. The flux go,1(d4 )
can be found by applying equation (3—43a)

o, 1(dAl*)— (1—e) fA Qo, l(dAl)dFdl‘—dl

—(1 —El)fA Q¢(df‘12)dpdn_dz=€10'Ti‘(dAl*) (3"66)

The F factors from equation (3—63) are then substituted to give

1—¢e
4 R?

Qo, l(dAf:)- J; Qo, l(dAl)dAx

_1_61
4-7TR"' A

Qe(dAz)dAg + E]UT?(dA ;“) (3"’67)

where the known quantities are grouped on the right side of the equation.
To solve equation (3—67), a trial solution of the form

o, (dAT)=f(dAN)+C

is assumed, where f is an unknown function of the location of d4{ and
C is a constant. Substituting into equation (3—67) gives
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1—¢ __1—-51
4wR? L,f(dA‘)dA‘ Rz ¢4

flddhH+C—
_1“€1

—m,’;, ge(dAz2)dAr + €0 THdA)

The only two terms that are functions of local position within the cavity
are the first and last which gives f(d4)= €.aT#dA). The remaining
terms are then equated to determine C. This gives the result for go, 1(dA4)

o, 1(dA})= e1cTH(dA})

1—e¢
R [, cortiatian+ . auddsyids |

1__(1_61)'41 (3—68)

4mR?

The desired solution is i'(d4*)= go, 1(d4 /.

3.5 CONCLUDING REMARKS

In this chapter, methods were developed for treatment of the energy
exchange within enclosures having diffuse-gray surfaces; the surfaces
can be of finite or infinitesimal size. The surfaces can have a specified
net energy flux added to them by some external means, can have a
specified surface temperature, or can be subjected to some combination
of these conditions. A number of methods were presented for solution of
the integral equations that resulted from the general formulation of
these interchange problems. It was pointed out that most practical prob-
lems become so complex that only numerical techniques can successfully
be used for the solution of the governing equations.

In succeeding chapters, extensions of the present procedures to
nonidealized surfaces are made, and methods for incorporating coupled
conduction and convection of energy will be introduced.
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Chapter 4. Radiation in Enclosures Having Some
Specularly Reflecting Surfaces

4.1 INTRODUCTION

In chapter 3 all the surfaces considered were assumed to be diffuse
emitters and diffuse reflectors. In this chapter the surface characteris-
tics of some of the surfaces will be changed. All of the surfaces are still
assumed to emit in a diffuse fashion. Some of the surfaces in an enclosure
will be assumed to reflect diffusely, as before. The remaining surfaces
will be assumed to be specular; that is, they will reflect in a mirrorlike
manner.

When reflection is diffuse, the directional history of the incident
radiation is lost upon reflection: the reflected energy has the same direc-
tional distribution as if it had been absorbed and then diffusely reemitted.
With a specular reflection, the reflection angle relative to the surface
normal is equal in magnitude to the angle of incidence. Hence, in contrast
to diffuse behavior the directional history of the incident radiation is not
lost upon reflection. Consequently, when dealing with specular surfaces,
it will be necessary to account for the directional paths that the reflected
radiation follows between surfaces.

The specular reflectivities used in this chapter are assumed inde-
pendent of incident angle of radiation; that is, the same fraction of the
incident energy is reflected, regardless of the angle of incidence of the
energy. In addition, all the surfaces are assumed to have gray properties;
that is, the properties do not depend on wavelength. :

4.2 SYMBOLS
area
specific heat
tube diameter
number of diffuse surfaces
configuration factor
length of enclosure side
total number of surfaces
energy rate; energy per unit time
energy flux; energy per unit area and per unit time
absolute temperature
volume
position coordinates
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absorptivity
€ emissivity
P reflectivity
Pu density of material
g Stefan-Boltzmann constant
T time
Subscripts:
e emitted
F final
I initial
i incoming
I k Jj™ or k** surface
0 outgoing
s specular
1,2 surface 1 or 2
Superscripts:
s total specular exchange factor including all paths for specular
interreflections plus direct exchange
" bidirectional value

denotes a second portion of area on same surface

4.3 RADIATION BETWEEN PAIRS OF SURFACES WITH SPECULAR
REFLECTIONS

4.3.1 Some Simpls Cases

As an introduction, consider radiation exchange for some simple
geometries: infinite parallel plates, concentric cylinders, and concentric
spheres as shown in figure 4—1. Specular radiation exchange in these
cases is well understood, having been discussed by Christiansen (ref. 1)
and Saunders (ref. 2) some years ago. Because the radiative exchange
process is easy to grasp for these cases, let us examine it at some length.

Consider radiation between two infinite gray parallel specular plates as
shown in figure 4-1(a). All emitted and reflected radiation leaving
surface 1 will reach surface 2 directly; similarly, all emitted and reflected
radiation leaving surface 2 will reach surface 1 directly. This will be
true whether the surfaces are specular or diffuse. Hence, for the specular
case equation (3—10) also applies, and the net heat transfer from surface 1
and surface 2 is

Ay T?—Té
0=—Qu=— =T @-1)

AP AN
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Now consider radiation between the concentric cylinders or spheres
shown in figures 4-1(b) and (c). Typical radiation paths for specular
exchange are shown in figure 4-1(d). As shown by path (a) all the radia-
tion emitted by surface 1 will directly reach 2. A portion will be reflected
from surface 2 back to 1, and a portion of this will be re-reflected from
surface 1. This sequence of reflections between the surfaces continues
until an insignificant amount of energy remains because the radiation has
become partially absorbed on each contact with a surface. From the
symmetry of the concentric geometry and the equal magnitudes of
incidence and reflection angles for specular reflections, none of the
radiation following path (a) can ever be reflected directly from a position
on surface 2 to another element on surface 2. Thus the radiation exchange
process for radiation emitted from surface 1 is the same as though the two
concentric surfaces were infinite parallel plates. However, the radiation
emitted from the outer surface 2 can travel along either of two types of
paths (b) or (c) as shown in figure 4-1(d). The fraction F;_, will follow
paths of type (c). From the geometry of specular reflections these rays
will always be reflected along surface 2 with none ever reaching 1. The
fraction F,_; will be reflected back and forth between the surfaces along
path (b) in the same fashion as radiation emitted from surface 1. The
amount of radiation following this type of path is

A262F2_10'T2=Azez(A1/Az)O’T; =A1€20'Tg

(the configuration factor Fs_; =A,/4; has been employed). The fraction
of the radiation leaving 2 that impinges on 1 thus depends on area A,
and not on A,. Hence, for specular surfaces the exchange behaves as if
both surfaces were equal portions of infinite parallel plates equal in size
to the area of the inner body. The net heat transfer from surface 1 to
surface 2 is then given by equation (4-1).

EXAMPLE 4-1: A spherical vacuum bottle consists of two silvered
concentric glass spheres, the inner being 6 inches in diameter and the
evacuated gap between the spheres being } inch. The emissivity of the
silver coating is 0.02. If hot coffee at 200° F is in the bottle and the out-
side temperature is 70° F, what is the radiative heat leakage out of the
bottle?

Equation (4-1) will apply for concentric specular spheres. For the
small rate of heat leakage expected, it is assumed that the surfaces will
be close to 200° and 70° F. This gives
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2
- (%) 0.173 X 10-8(6604 — 530%)
o= 1 1 =1.52 Btu/hr

(If, instead of using the specular formulation, both surfaces had been
assumed diffuse, then equation (3—14) would be applied. The denominator
of the Q, equation becomes

L AL\ L (61 _
P o vl v o 5) (g2—1) =18

instead of 99, as in the specular case. For diffuse surfaces the heat loss
would be 1.64 Btu/hr.)

EXAMPLE 4-2: For the previous example, how long will it take for the
coffee to cool from 200° to 120° F if the heat loss is only by radiation?

The heat capacity of the coffee is pu¥c,T1. Assuming the coffee is al-
ways well enough mixed so that it is at uniforin temperature, the cooling
rate will be equal to the instantaneous loss by radiation. The loss of
energy by radiation at any time 7, given by equation (4-1), is related to
the loss of internal energy of the coffee by

dl\ _Awo{T{n) — T}
dr 1,1,
€ €

The approximations have been made that surface 1 is at the coffee tem-
perature and surface 2 is at the outside environment temperature. Then

"7 _dTn _ Ao [rd'r

4 - T4
rer, I#—T; puVep (l+l - 1) 70
€ €2

where T; and Tr are the initial and final temperatures of the coffee and
€, and €; are assumed independent of temperature. Carrying out the
integration gives

T.+T. 1 a0
47.31 i +2Tgtan lT

7""_ Ao

Then the cooling time from T to Tr is
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1.1 Tr+T,
= pMch (el + & 1) L In _TF — Tz + _.1'_ (tan-—l &_ tan—l ﬂ)
A 1o 41‘% T[ + Tz 27’3 Tz Tz
I —-T,

3
Substituting the values py=62.4 1b/ft3, ¥ =% ™ (%) ft3, cp, =1 Btu/(1b)(°F),

2
€ =€&=002, A= (%) £12, >=0.173 X 10-* Bru/(hr)t2)°RY), T;=530° R,

T,=660° R, and Tr=580° R gives the cooling time as =380 hr.

The coffee will stay hot for about 16 days if heat losses occur only by
radiation. Conduction losses through the bottle neck usually cause the
cooling rate to be much higher.

Equation (4-1) applies for infinite parallel plates, infinitely long

TABLE 4~1. — RADIANT INTERCHANGE BETWEEN SOME SIMPLY ARRANGED SURFACES

Geometry Configuration Surface type Energy rate,
Q
Infinite parailel . Ajor Ay, either Ay (T‘f _ Tg)
plates > / specular or —
/ diffuse -+ 1. 1
Ay a1«
Infinitely long Ay, specular or diffuse A (T‘f B T%)
coqcentnc Ag, diffuse —_—
cylinders A L,
A\ q Az €
\
\ Ay, specular or diffuse | A (14 . Td)
‘ A, specular l—lli
A ate!
2 (l (2
Concentric Ay, specular or diffuse Ao (T‘} . ré)
spheres A, diftuse — T
l > — (_1. - 1)
q A\
A4, specular or diffuse
I Specuar o wo (1}- 13)
py Ay, specular 1 X
—_— ——-

..Az
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concentric cylinders, and concentric spheres when both surfaces are
specular. For infinite parallel plates, it also applies when both surfaces
are diffuse or when one surface is diffuse and the other specular. For
cylinders and spheres, equation (4—1) still applies if the surface of the
inner body (surface 1) is diffuse as long as the outer body (surface 2)
remains specular. This is because all radiation leaving surface 1 will go
directly to 2 regardless of whether 1 is specular or diffuse. When surface 2
is diffuse, equation (3—14) applies and may be used when surface 1 is
either specular or diffuse. The relations are summarized in table 4—1.

432 Energy Exchange Between Specular Surfaces

4.3.2.1 Ray tracing and the construction of images.— When mirrorlike
reflections occur in enclosures, the well-developed procedures of
geometric optics can be applied to simplify both the concepts and the
mathematics of the radiative exchange process. The basic ideas are
outlined in this section. More advanced ideas may be found in references

3 and 4.
An incident ray striking a specular surface is reflected in a sym-

metric fashion about the surface normal so that the angle of reflection is
equal in magnitude to the angle of incidence. This fact is used to formu-
late the concept of images. An image is simply an apparent point of
origin for an observed ray. For example, in figure 4—2(a), an observer
views an object in a mirror. To the observer, the object appears to be
behind the mirror in the position shown by the dotted object. This
apparent object is called the image.

This procedure is readily extended to cases where a series of reflections
occurs, as shown in figure 4—2(b).

To this point, it has been assumed that the mirrors in the system do
nothing except change the direction of the rays originating at the source.
In the formulation of thermal radiation problems, the specular surfaces
will, in general, have a nonzero reflectivity. They will thus attenuate the
energy of the rays from an object.

In addition to reflecting energy, the mirrors can emit energy. This
emission can be conveniently analyzed with an image system rather than
with the real mirror system. In the image system, all radiation acts along
straight lines without the complexity of considering directional changes at
each reflecting surface. The attenuation at each surface is accounted for
by multiplying the intensity of the ray by the specular reflectivity at each
reflection. The emission from three surfaces is illustrated in figure
4-2(c). For example, emitted energy reaching the viewer from surface 3
is considered to be coming directly from the image of 3, with attenuation
due to reflections at 2 and 1 because of passage through these surfaces
or their images.



116 THERMAL RADIATION HEAT TRANSFER

— — —_—
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Specular Image
surface
Object
{a)
Specular
surface ] Image of 2 Image of 3
N\ Image of
4 ll N 12 P object
“11 Object
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Speculal\ 3 Specular
surface 2 1 surface 3
(b
Emission Emission Emission from
from 1-\‘ from 2-\\ 3to observer«\

P
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(c)

(a) Image formed by single reflection.
(b) Image formed by multiple reflections.
(c) Contributions due to emission from specular surfaces.

FIGURE 4-2. — Ray tracing and images formed by specular reflections.
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In some geometries, a ray may undergo multiple reflections from
various surfaces before reaching the observer. An example of this is
the “barber-chair” geometry, where mirrors are present on opposite
walls of the barber shop. In this case, if the mirrors are parallel, an
infinite number of reflections of a ray can occur, and a person receivinga
haircut can view an infinite number of images of himself (if the mirrors
are perfect, i.e., if p,=1).

4322 Energy exchange between simple specular surfaces.—As an
introduction to the radiation exchange in an enclosure having some
surfaces that are specularly reflecting, a few examples will be considered
for plane surfaces. The examples will further demonstrate the new
features that enter when mirrorlike surfaces are present.

The emission from all surfaces is assumed diffuse. This is a fairly
good assumption in most cases, as can be shown by the electromagnetic
theory predictions of the emissivity of specular surfaces (fig. 4-5,
Vol. I).

Figure 4—3(a) shows a diffusely reflecting plane surface 4, facing a
specularly reflecting plane surface A4». Surface 1 cannot view itself; the
configuration factor from any part of 4, to any other part of 4, is thus
zero. However, if A. is specular, then 4, can view its image, and a path
exists by means of a reflection from the specular surface 4. for radiation
to travel from the differential area d4, to d4}. By looking at the diagram
in figure 4—3(a), it is evident by the ray tracing techniques that the radia-
tion arriving at d4} from dA4; appears to come from the image dA2.
Thus, the geometric configuration factor between d4; and dA4} resulting
from one reflection can be obtained as dF 4i2)-41*. The subscript notation
refers to a factor from the image of d4, (as seen in A;) to d4}.

There are points of similarity that should be noted when comparing
the specular and diffuse cases. When A4, and 4; in figure 4—3(a) are both
diffuse reflectors, radiation from dA, is received at d4} by means of
diffuse reflection from A;. Since the reflected energy is diffuse, it can be
considered together with the emitted energy from A4,, which is also
diffuse, the sum being the outgoing flux q,,: as discussed in chapter 3.
If, however, the exchange between dd; and d4} by means of diffuse
reflection at 4, is examined separately from the emitted energy, it is
governed by Fg;-; and then dF._;- (keeping in mind the uniform flux
restrictions that are necessary in using configuration factors). The portion
of the emitted energy d2Q., a1-dar'» from dA, that reaches d4¥ after one
reflection from A is the following, for the two cases of diffuse and specu-
lar A,, respectively:
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FIGURE 4~3. — Radiation between a diffuse surface and itself by means of a specular surface.

sze, di-d1*(2) = (dAléxo‘T?)Fdl —20n dFs_a1
d?Q., a1-ar’n = (d4d16,0T)ps, 2 dF ay2)-a1*

This reveals that, for ps=p,,1, the difference in the two exchanges is
incorporated in the configuration factors for reflected radiation. The
difference in the factors results from the nature of the reflection being
considered, which is a purely geometric effect.
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Figure 4-3(b) describes the emitted radiation from dA, that reaches
the entire area A, by means of one specular reflection. The reflected
radiation appears to originate by diffuse emission from the image dAys.
Thus the geometric configuration factor involved from dA, to A, is Fayz)-:1.

Figure 4—-3(c) shows several typical rays leaving 4, that are reflected
back to A4;. These rays appear to originate from the image Ayz. The
configuration factor from A, back to itself by means of one specular
reflection is then Fyz-;. In this instance, all of the image 4y is visible
in A; from any position on 4;. In some instances, this will not be true.
An example is shown in figure 4-3(d). The radiation from dA4, has to be
within the limited range of solid angle shown shaded in order that
the radiation be reflected back to A4;,. The geometric configuration
factor between dA,; and A, is still Fayz-1, but this factor is evaluated
only over the portion of A, that receives reflected rays. Fyz-; is the
factor by which dAys) views A,, and it must be kept in mind that the view
may be a partial one. This factor will have a different value as the
location of dA, along A, is changed. The fact that the view between
dA, and A4, varies with the position of d4, along A4, means that the
energy from A, that is reflected back to 4, will have a nonuniform
distribution along A4,. The reflection of some of this energy from 4,
will provide a nonuniform ¢, from A4,, which violates the assumption in
the enclosure theory of uniform ¢, from each surface. When partial
images are present, caution should be exercised in subdividing the
enclosure area into sufficiently small portions so that the accuracy of
the solution is adequate.

Now consider the geometry involved when there are two or more
specular surfaces involved in the radiation exchange. This will lead to
multiple reflections and many different paths by which radiation can
travel between surfaces. At each reflection, the radiation is modified by
the p, of the reflecting surface. At present in this discussion, only the
geometry is being considered; the p, factors will be included later when
heat balances are formulated.

In figure 4-4 are shown two specular surfaces. Energy is being
emitted from A4; and is traveling to surface 4,. The fraction arriving
at d4, is given by the geometric configuration factor dF;_q4:. This direct
path is illustrated in figure 4—4(a). A portion of the energy intercepted
by A4, will be reflected back to 4, and then reflected back again to
A,. Hence, A4; not only views dA4, directly but also by means of an image
formed by two reflections. This image is constructed in figure 4—4b).
First the reflected image A,z of A, reflected in A4, is drawn. Then 4.
is reflected into this image to form Ay;-z. The notation A,y is read
as the image of area 2 formed by reflections in area 1 and area 2 (in that
order). The radiation paths and the shaded area shown in figure 4—4(b)
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FIGURE 4—4. —Radiant interchange between two specular refiecting surfaces.

reveal that the solid angle within which radiation leaving A, will reach
dA, by means of two reflections is the same as the solid angle by which
dA, views the image Ax;-2. Thus, the configuration factor involved for
two reflections is dFx;-2-ai. This is read as the factor from the image of

surface 2 formed by reflections in surfaces 1 and 2 (in that order) to area
element d1.
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Consider the possibility of additional images. The geometric factor
involved is always found by viewing dA4, from the appropriate reflected
image of A; as seen through the surface 4; and all intermediate images.
In the case of figure 4—4(c), the image of A, after four reflections
Ax1-2-1-2 cannot view dA4,; by looking through A.. Hence, there is no
radiation leaving 4 that reaches d4; by means of four reflections, and
no additional images need be considered.

EXAMPLE 4~3: An infinitely long groove as shown in figure 4-5 has
specularly reflecting sides that emit diffusely. What fraction of the
emitted energy from A, reaches the black receiver surface element d4;?
Express the result in terms of diffuse geometric configuration factors.

Consider first the energy that reaches dA4; directly from 4. and by
means of an even number of reflections. The fraction of emitted radiation
that reaches dA4; directly from A is dF2_4s, as illustrated in figure 4—5(a).
A second portion will be emitted from A4, to A4,, reflected back to A,,
and then reflected to d4;. From the diagram of images in figure 4—5(b),
only part of the reflected image Ax;—z can be viewed by dA4; through
As. The fraction of emitted energy reaching d4; by this path is the con-
figuration factor evaluated only over the part of Axi-2) visible to dA;
multiplied by the two specular reflectivities, p;, 105, 2 dF2(1-2)-a3. This is
not an ordinary view factor, but it takes into account the view through the
image system. In a similar fashion, there will be a contribution after two
reflections from each of 4; and A;. This is illustrated by the shaded solid
angle in figure 4-5(c). The third image of 42, A2(1-2-1-2-1-2) cannot be
viewed by dA; through A2; hence, it will not make a contribution. Also,
the third image of A2 cannot view A, through 4,; consequently, there will
be no additional images of A;. The fraction of energy emitted by 4. that
reaches dA; both directly and by means of the images of A, is then

dF2_a3+ ps, 1ps. 2 dF 2x1-9-a3 + p? 1p% , dF20-2-1-2)-a3

Now consider the energy fraction that will reach d4; from 4, by means
of an odd number of reflections. Using figure 4-5(d) and arguments
similar to those for an even number of reflections results in

P 1dFyy-as+ P} 1Ps 2 dF2a—2-t)-aa+ 03, 1P%, 2 dF a4 -3 —1-2-1)-d3

The first two of the F factors are only evaluated over the portions of the
images that can be viewed by dAs.

The fraction of energy emitted by surface A, that reaches dA4; directly
and after all interreflections from both A, and A4, is then
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figure 4—6(a), and the reciprocity relations for diffuse configuration
factors.

A second type of reciprocity relation exists for specular surface
configuration factors. To derive this relation, examine the energy ex-
change between two surfaces A, and 4; contained within an isothermal
enclosure. If both surfaces are specular, then the image system shown
in figure 4-6(b) can be constructed for the case of radiation from 2 to 1
by means of a reflection at 1 and at 2. For any such system, an analogous
system can be constructed in which a plate with an aperture is sub-
stituted for the restraints on the ray paths that are present, as is done
in figure 4-6(c). The aperture is placed to allow passage of only those
rays that pass through the image system by which 4; can view at least
a portion of A(;-2) through A2 and A4,(2).

The emitted energy leaving specular surface A; in the analog system
and absorbed by A, is

Qz(l-z)-l = Qe. 2Ps, 1P, zen-z)-nau
= Ao1-2)€20 TPy, 104, 2F 2(1-2)-161 (4-5)

The reflectivities account for the reduction in energy by the two inter-
mediate specular reflections. Fi-z-1 is the diffuse surface configu-
ration factor computed for the constrained paths passing through the
aperture (see example 4—4). Since these paths are exactly those through
the image system, this is also the specular configuration factor. Sim-
ilarly, the eneérgy along the reverse path is

Qra20-2)= A& TP, 2ps, 1F1-2(1-21€2 (4-6)
Equating the energy exchanges in either direction between A4, and
Az1-2) for the isothermal enclosure results in the following reciprocity
relation:

AF 1—20-2y= A2 —aF 20-2)-1 = A2 F21-2)1 (4-7)

By generalizing for many intermediate reflections from surfaces A4, B,
C, D, and so forth, equation (4-7) can be written as

AFya-B-c-0.. )=AsF%a-8-c-p.. 11 (4-8)
EXAMPLE 4-4: A black surface A, faces a smaller parallel mirror

A; as in figure 4-7. Compute the configuration factor Fi_i@2 between
A, and the image of 4, formed by means of one specular reflection in
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A:. The surfaces are infinitely long in the direction normal to the plane
of the drawing.

The factor is computed from the integral F;-,(z,=(1/A1)f Fay -2 dA,.
Ay
Consider the element dA4, at location x on A4,. The configuration factor

for radiation from dA4, to the portion of A,z in view through A; is (see
example 2—4)

x+a x—a ]

1 . , 1 [
Faioi == ' N | —
a1-12) =75 (sin @' —sin ") =7 Viz+a)+b Vix—a)i+b?

This is valid until position x={—2a is reached (fig. 4-7). For larger
x values the geometry is as shown in figure 4-7(c). Then

F =l(sin '-—sin n)__:l[ X+l _ x—a ]
wo T e T Vet it 4 Vi—air b

The desired configuration factor is then

1 {
F:-x(z)=§l‘2fo Fa_v2) dx

=l{lf""‘[ xta __x:_a__]
112 ) Vix+ap+b Vix—aP+ b
1t x+1 x—a
+= - dx}
2 Ji-2q [\/(x+l)3+4b2 \/(x—a)=+b2]

The integrations are carried out, and the results simplify to

=1+ (1) = (1=9) (1)

Consider a case where there are two or more specular surfaces in
an isothermal enclosure at temperature T. For simplicity, an enclosure,
such as figure 4-6(d), shall be discussed where there are two specular
and two black surfaces. If the heat exchange between the two black
surfaces is considered by direct exchange and all specular reflection
paths, the following relation results:

glf: = AI[FI-Z + ps, F -2+ Ps, F -2

+ ps, 308, 4F 1302+« -+ pP3pl Figaogm-2 T - -] (4-93)
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Q&%=A2[Fz—1 + Pa. 3F2@3)-1F Pa, sF20-1 + Pa, 3Ps, «F2(s-31-1

+- - ~+pmapl Foggm+ - 0] (4-9b)

The shorthand notation (3™ —47") means m reflections in 3 and n in 4.
Equation (4-9) can also be written as

g'-lT_:"‘z-:%T;“l-:AlFf-z:AZF;-l 4-10)

where F* is an exchange factor equal to the quantity in parentheses in
equation (4-9).
Now look at equation (4-9) in more detail. Since 41F -2 =A,F:-, and
from equation (4—4) for one reflection
AFyy-2=A:Fxn-1  and AF -2 = A2F 241
the equality in equation (4-9) reduces to
Ar1[pe, 3ps, sF13-0-2F + +plapd Fram-sm-2+- - -]
= A)[ps, 305, sFaa-m—1++ = -+ plaph oFrw-zm—1+- * °} (4—11)
Dividing by ps, 305, 4 results in
A [Figsy2+- - -+ pr3'prdF1ge-an-2t- - ]
=As[Fau-p-1+- - -+ pP3prdFasr—am+- - -] (4-12)
This equality must hold in the limit as p, 3 and p,, + approach zero so that

A\Frg-9-2= A2F 24311 (4-13)

which is a geometric property of the system. A continuation of this
reasoning leads to the general reciprocity relation

AyFia—g-c-p .. y—2=A2F s . p-c--a)—1 4—-14)
Note that combining equations (4—8) and (4—14) results in the identity
AFa-B-c-p . . y-2=AsFs . p-c-g-wy-1=A1F\_24--c-p .. 1 (4-15)

or
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Fua-s-c-o .. 2=F\_s4—p-c-p . . ) (4—-16)

This latter relation can also be deduced directly from the fact that an
image system can be constructed either starting with the real surface 1
and working toward image 2(A—B—C—D . . .), or starting with
image 1(4—~B—C—D .. .) and working toward real surface 2; in
either system, the geometry of the construction will be identical. Thus,
the configuration factors between the initial surface and the final surface
must be the same.

4.4 NET RADIATION METHOD IN ENCLOSURES HAVING SPECULAR AND
DIFFUSE SURFACES

4.4.1 Enclosures With Plane Surfaces

In this section, the radiation exchange in an enclosure composed of
specularly and diffusely reflecting surfaces will be considered. As an
introduction to enclosure theory when specular surfaces are present,
consider an enclosure composed of three plane surfaces at different
uniform specified temperatures as shown in figure 4—8(a). Later, the
boundary condition of specified heat flux will be considered. All the
surfaces are diffuse emitters, but two are diffuse reflectors while the
third reflects specularly. For simplicity, it is assumed that the enclosure
is sufficiently long that the effect of the ends can be neglected.

In applying the net radiation method, the heat balance equations
(egs. (3—1) and (3—2)) do not depend on the type of reflection occurring
and, hence, will apply for both diffuse and specular surfaces. Then for
all three surfaces of the enclosure

Qe=qxAx=(go.k~qi. )4  k=1,2,3 (4-17)

Qo k=€ T+ (1—€x)qi, k k=1,2,3 (4-18)

There is a difference in interpretation of g, when the surface is specular.
For a diffuse reflector, both emitted and reflected intensities are uniform
over all directions; hence, €aT* and (1 —€)q; have the same directional
character and the diffuse configuration factors can be applied for both
of these quantities. For a specular reflector, however, the (1 —¢€)g; term
will have a directional distribution different from that of the diffuse emis-
sion eoT4. Thus, when surface k is specular, the specular portion of ¢, x
will have to be treated differently than the diffuse portion.

Now the equations for gi, x for specular surfaces in the enclosure will
be derived that are comparable to equation (3—3) or (3—5). Refer to
figure 4—8(a); the energy arriving at surface 1 comes directly from the
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diffuse surfaces 2 and 3 without any intermediate specular reflections.
Hence, equation (3—5) applies

@G, 1=F12qo, 2+ F1-3¢,,3 (4-19)
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For surface 2, the incoming radiation is composed of four parts which
originate as shown in figure 4-8(b). The first is the diffuse term for energy
originating from A3, and going directly to 4: which is g, 343F3-2. The
remaining three parts arrive by means of A4, and consist of a diffuse
emitted portion € oT{AF -2 plus two reflected specular portions. The
specular portions arise from the energy leaving 42 and A3 that is specu-
larly reflected to 4z and will appear to come from the images A42u), and
Az in figure 4—-8(a). The specular portions are equal to

go, 2Ps, 1A2F201)-2 + go, 3P4, 143F 301)-2
Note that multiple reflections cannot occur when only one planar specu-

lar surface is present. The sum of the terms for the incoming radiation
to surface 2 is then

A2qi, 2= &0T{AF 122+ o, 2Ps, 1 A2F 2012+ Go, 343F 32 + o, 3P4, 143F 301) -2

After applying configuration factor reciprocity (eqs. (2—25) and (4-8)),
this can be regrouped into the form

Gt 2= 0T F 31+ Go, 201\ F2-20) + qo, s[F2-3+ ps, 1F2-a1) (4-20)
Similarly, for surface 3

Gi,3=&0TiFa_1+ o, 2[Fa-2+ ps, 1Fs-200] + Go, 3Ps, 1F3-30  (4-21)

Equations (4-20) and (4-21) are two simultaneous equations involving
the unknowns g¢,,2 and g, 3. If qi,2 and q;, 3 are eliminated by use of
equation (4-18), there is obtained

.2~ &0T}

1= = 0TIF -1+ qo, 20+, 1F2-20) + o, 3 [ F2-3+ ps. 1F2-3010]

qo - T
31 _Za 1 o TiFao1+ qo, 2 [Fa-2+ ps, 1F3-200] + go. 3Ps, 1F3-301)

After rearrangement, this yields

o, 2[1 — Pas, 1(1 —Ez)Fz—z(x)] - Qo,s(l —€e) [Fz—a+Px. 1Fz-3u)]
=€1(1—€2)F2-|G'T1+ €20‘T§ (4"‘22)
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—go.2(1 — &) [Fa—z+ ps. \Fa2y] + o, 3[1 — ps, 1 (1 — &) F3_31)]
=€1(1'—€3)F3_|0’T‘f+€30’T3 (4'-23)

Equations (4-22) and (4-23) can be solved for g,,» and go, 3 in terms
of known quantities. After go,2 and go,3 are found, they are used in
equations (4-19), (4-20), and (4-21) to find the ¢; for each surface
and then equation (4-18) is used to find go,:. Equation (4-17) is then
employed to determine the Q for each surface, which is the heat addition
required to maintain the surfaces at their specified temperatures, or in
other words, is the net radiative heat lost from each surface. Equa-
tions (4-22) and (4-23) are analogous to the system of equations for
diffuse surfaces given by equation (3-21).

EXAMPLE 4-5: An enclosure is made up of three sides as shown in
figure 4-8(c). The length L is sufficiently long so that the triangular
ends can be neglected in the radiative heat balances. Two of the sur-
faces are black, and the third is a gray diffuse emitter of emissivity
€, =0.05. What is the heat added per foot of length to each surface for
each of the two cases: (1) area 1 is a diffuse reflector and (2) area 1 is a
specular reflector?

The configuration factors are computed first. From symmetry
Fi_s=F,_3. Also F\_;+F,_3=1, so that Fi.;=F,_3=1/2. From reci-
procity Faoy=A\F\-2/A:=V?2/2=F;_,. Now F..,+F.3=1. Hence
Fia=1—V2/2=F;_3=Fs2,=Fa_s). Finally, Fi_ny=Fean=

.l —F:;-:-Fa_s(n=\/-2-—1.

For case (1), apply equation (3—18) to obtain

Q 1

(500)4—-;- (500)‘—% (1000)4

(500)* + (500)* — (1 - L;_Z) (1000)*

_ 0 V2(1-005) Q. _=V2
oV2 2 005 a(l) 2

_0_V2(1-005) O _-V3
aV2 2 0.05 a(l) 2

(500y* — (1 —\/Ti) (500)* + (1000)*

The solution of these three equations yields the Q's per foot of enclosure
length as Q;=—>57 Btu/hr, Q;=—1018 Btu/hr, and Q;=1075 Btu/hr.
The heat supplied to 43 is removed from 4, and 4:. The amount removed
from A, is small because 4, is a poor absorber.

For case (2) apply equations (4—22) and (4—23) to compute go,2 and
Qo 3. Since e =¢é =1, these equations yield simply ¢,,2=0T} and
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go.3=0T4 which would be expected for the outgoing fluxes from black
surfaces. Then equations (4—19), (4-20), and (4-21) yield the g¢; for each
surface as

_Qi.l_l 4 l 4

2 (500) +2 (1000)

Q2 _ 4 \_/_2 (11— __\1—2
2 0.05(500) 3 + (500)4(1—0.05) (1 5 )

+ (1000) [1—%+ i1—0.05)(\/§—1)]
.3 0,05(500)* V2, 500y [1—154- (1—0.05)(\/5-—1)]
o 2 2
-+ (1000)4(1—0.05) (1—%—5)

Equation (4—18) gives ¢o,1 as
g;—:3=0.05(500)‘+ (1—0.05) [—;— (500)‘-%--;— (1000)‘]

With ¢; and g, known for each of the surfaces, equation (4—17) is applied
to find Q. This yields per foot of enclosure length Qi =—357 Btu/hr,
Q:=—1113 Btu/hr, and Q3=1170 Buu/hr.

Comparing cases (1) and (2) reveals that, by making A4, specular, the
heat transferred from A3 to A. is increased from 1018 to 1113 Btu/hr or
an increase of 10 percent.

There are some general ideas that should be emphasized with regard
to example 4-5. Look first at equations (4—20) and (4-21). The gi,: and
qi, s for the two diffuse surfaces are expressed in terms of the diffuse
quantities, €,0T?, o, 2, and go, s where €,0T4 is the diffuse portion of the
outgoing energy from the specular surface 4;. The energy reflected
from the specular surface enters equations (4-20) and (4—21) only
through the geometric configuration factors. As a result, equations (4—22)
and (4~23) have only the two unknown fluxes g,,2 and go, 3 for the diffuse
surfaces, and these quantities can be determined without considering
the go,1 for the specular surface. The value of go,, if desired, is found
by using equation (4—18). The number of equations that must be solved
simultaneously is thus equal to the number of diffuse reflecting surfaces;
these equations express the outgoing radiation from each diffuse surface
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in terms of the diffuse portions of the outgoing radiation from all the
surfaces.

To demonstrate further and begin to generalize the radiative heat
balances in an enclosure having some specular reflecting surfaces, con-
sider the rectangular geometry shown in figure 4—9. All of the surfaces

A Ta
diffuse emitter,
diffuse reflector Py
~ Actual I
T / Ay T
M T ray path > >
diffuse emitter, diffuse emitter, I A
diffuse reflector specular reflector I 103
e ]
AvTa N | |

diffuse emitter, “W_
| specular reflector *

| | N /,-:a:!om? [A13-0

| ALa) |43 N |A“4'3’
N

I | ~ |

| | N
R I

Agy A23-4)
A2a-3)

FIGURE 4-9.—Rectangular enclosure and reflected images when two adjacent surfaces
' are specular reflectors and other two are diffuse reflectors.

are diffuse emitters; two of the surfaces are diffuse reflectors while the
remaining two are specular. Shown dashed are the reflected images.
The reflection process continues until all of the outer perimeter enclosing
the composite of original enclosure plus reflected images is made up of
either diffuse (or nonreflecting, such as an opening) surfaces or images
of diffuse surfaces.
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For the enclosure in figure 4-9, the first step is to obtain ¢, and
o, 2 for the two diffuse areas. From equation (4—18) these can be written

as
go,1=€0T}+ (1 —€&)qi, (4-24)

@o,2=€0T3+ (1 —&)qi,2 (4-25)

The gqi,: and g, ; are determined from the diffuse portions of the outgoing
energies from all the enclosure surfaces as follows: Consider, for ex-
ample, the quantities that form gi, ;. Part of go,: returns to 4, by three
paths: (1) direct reflection from Aj, (2) reflection from A; to A, and then
to A, and (3) reflection from A, to A5 and then to 4;. Thus, the portion
of the energy leaving A, that returns to 4, is

o, le[P-. Fi@-1+ P, 3Ps, Fiaepat+ Ps, 4Ps, 3F1(4—3)—x]

The factor Fi3_g-1 is the view factor by which 4y;3-4) is viewed from 4,
through 4, and then Ax4, which are the reflection areas by means of
which the Ay3-4 image was formed. Similarly, F\4-3)-1 is the view factor
by which the same area 434 is viewed from A, through 4; and then Ay3).
The go,2 leaving 42 contributes to gi,1 by reaching A4, along four paths:
(1) direct exchange, (2) reflection from A3, (3) reflection from A4,, and
{4) reflection from A; to A4. There will be no energy from A» that reaches
A, by means of reflections from A4; and then A4;. This is because 4,
cannot view the image Azy-3; through area A;.

The diffuse energy leaving the specular surface A; (and similarly for
A4) consists only of the emitted energy €243 T4. There are two paths by
which some of this will reach 4;: (1) by direct exchange, and (2) by means
of specular reflection from A4,.

Combining all of these terms yields gi,1, the incoming energy to 4.
in terms of the diffuse quantities leaving all the surfaces,

Aiqi, 1= A1qo, 1{ps. 3F war-1 + Ps. 305, s [F13—00-1 + Fra=n-1] }
+ A2qo, 2 [Fa-1+ ps, 3F 23)-1 + Pa. sFs0)=1 + Pr. 305, $F 23-4)-1]
+ A3 T F3-1 + ps, sF34)-1] + As€oT{[F ot + ps, 3F 43)-1] (4-26)
The angle factor reciprocity relation (eq. (4-15)) can then be applied to
replace all areas in equation (4-26) with 4, which can then be elim-

inated. The resulting equation is equated to ¢, from equation (4—24)
to give
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go,1 —€10Tt

=80Tt g {pusFisn 390 [Frcsat Frcsaca])

+ Go, 2 [F1-2+ ps. aF 12+ Ps, sF 1=200) F+ Ps, 3ps, sF 1-23-0]
+ &OTi[Fi-3+ ps. F1-30] + &0T} [Fios+ps,3sF1—am]  427)

In a similar fashion, considering g;, » for surface 2 yields

— &,07T;
%J= Go. 1[F2=1+ ps, 3F 22100 F Ps, +F 2104y + Ps, 3Ps, oFai4-3)

+ Go, 2{Ps, sF 2-20)F Ps, 395, 4 [F2-24-3+ F2-26-01}

<+ EgO‘Ti{Fz_a + Ps, 4F2-3(4)] + E-uO'Ti [F.'-4 + Ps, 3F2-4(3)] (4’-28)
Equations (4-27) and (4-28) are solved simultaneously for go,1 and go, 2.
For the two specular surfaces, the ¢, 3 and gi,+ can be found as soon
as the q,’s for the diffuse surfaces are known. For specular surface A;,

the incoming radiation is

Asqi, 3=A1go 1 [Fn-a + s, Fr-3]
+ A2qo, 2[F2-3+ s, sF301-3] + As€a0TiF s 3 (4-29)

By using reciprocity, the 43 can be eliminated; thus
i.3= Go, ([F3-1+ ps. +F3-10] + o, 2[Fa-2+ ps, sF3-20) + €0 TiF 3
4-30)
Similarly, for qi, 4,
@i, s= Go, 1[Fa-1+ ps, sF scun] + Qo, 2[F a2+ ps, 3F s—2n] + €0 T3F 45
(4-31)

For the diffuse surfaces, the net flux added to maintain thermal equilib-
rium is, from equation (3—96),

1 €1
4 l-«

(0Tt qo,1) (4-32)

Q_ E (0TS —go.2) @-33)
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while for the specular surfaces, by eliminating ¢, from equations (4-17)
and (4—-18), the result is

=eocTi—qi3) (4-34)

&

Aa

%= &oTi—qi4) (4—-35)
4

All factors needed for solution of the problem are now known. When

surface 1 (or 2) is black, equation (4-32) (or eq. (4—33)) cannot be used

because ¢o,1 =0T} and 1 —€; =0 so that an indeterminate expression
results for Q;. In this case, as in example 4-5, ¢i,  is found from equation

(4-26) and then Qi/4,=qo,1 —qi,1=0Tt—qi, 1.

Generalization to the case of an N surface enclosure is possible. For
the enclosure surfaces at specified uniform temperatures, examine the
equations for g, from the diffusely reflecting surfaces, as given by equa-
tions (4-27) and (4-28) for the enclosure in figure 4-8. These can be
rewritten in the form
Go. 1= €T+ (1 — € )go, 1{ps, 3F 11+ Ps. 308, slF 1 13-y + Frors-a]}

+ qo, 2[F1-2+ Ps, 3F 1-2 F P, oF 1-2(0) + s, 3P4, sF 1-23-4)]
+ &OTYF -3+ ps, F1-30]+ &OTHF 1+ ps, 3F1-43)])
= &,0Tt+ (1= €)go, 1F1_, + o, 2F_, + €0TiF1_y + o TiFI_,)

(4-36)
and

Qo.2=€0Ti+ (1 —€) (go, 1[Fact + pr,3F 2213+ ps, +F2-10)
+ b.. 3Ps, tF2-14-3] + o, 2{pr, +F 220
+ Py, 305, s [Fr-aa-n+ Faczg-01} + 0T [Faza + ps, +F2-30]
+ &0 Ti[Foos+ ps, aF 2-4n])
= 0T4+ (1 —€)(qo, | Fi_,+ qo, 2F}_s+ &0TiF3_+e0oTiF; )
4-37)

where the factors F%_, give the fraction of the diffuse energy leaving
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surface A and reaching surface B by direct exchange and by all possible
paths of specular reflection.

For an N surface enclosure made up of d diffuse and ¥ —d specular
reflecting surfaces at specified temperatures, a general set of equations
of energy exchange can be written by generalizing equations (4—36) and
{4—37). Let the diffuse surfaces be numbered from 1 to d and the specular
surfaces from d+1 to N. Then the general equation is written for each
diffuse surface as

d N
Go,k—(1—€) Y Qo ;Fij=e&oTi+ (1—e)o S TiFL

Jj=1 j=d+1

l<ks<d (438

_.This set of equations is solved for the g, for the diffuse surfaces. For

each specular surface, the g,’s for the diffuse surfaces are used to
obtain g;, x in the form (a generalization of eqgs. (4-30) and (4-31))

d N
.= g Fiyta S TFL; d+1sksN  (4-39)

= R
The net external energy added to each diffuse surface is

Kk

Qc=Ax 1iek (0Tt —qox) l<k=d (4-40)
and, to each specular surface
Oc=Acvex(oTi—qix) d+1sksN (4-41)

Equations (4—38) to (4—41) are the general energy interchange relations
for enclosures made up of diffuse surfaces and specular surfaces.
If the kth diffuse surface is black, then go,x=0T% and 1 — €, =0, so

that equation (4—40) is indeterminate. In this case, the following equation
can be used:

Qe=Ai(cTi—qi,x)

where gqi, x is found from equation (4-39) with 1<k =<d.

If the heat input Qi rather than T is specified for a diffuse surface
1<k =<d, then T, is unknown in equations (4-38). Equation (4-40)
can be used to eliminate this unknown in terms of go, x and the known Qx.

If the heat input Qk is specified for a specular surface,d+1<k=<N,
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then one of the T} in the last term of equation (4-38) will be unknown.
Equation (4—41) is combined with equation {4-39) to eliminate g,
which gives

d N
oTi—~ Ok =N g Fiy+o 3 ¢TiFL,; d+1<ksN (4-42)
Avee Jmds

Since Qk is known, equation (4—42) can be combined with equation
(4-38) to yield a simultaneous set of equations to determine the go of
the diffusely reflecting surfaces and the T for the specularly reflecting
surfaces having specified Q.

An alternate form of the final equations can be found by using equa-
tions (4-40) and (4-41) to eliminate ¢; and g, from equations (4-38)
and (4-39). This gives a set of equations all of the same form that
directly relate the Q’s and T’s,

10 _$Q1l-g )L X
—xk_ = - T4 - T4
o A j-21AJ . Fi_j=oT} j-zlo' tFL, j;‘:ﬂ oeTiFL

1<k=<N (4—43)

4.4.2 Curved Specular Reflecting Surfaces

In the previous discussion, all of the specular surfaces have been
planar. Here, curved specular reflecting surfaces will be considered, and
in this instance, the geometry of the reflected images can become quite
complex. To demonstrate some of the basic ideas, a relatively simple
case will be examined; this is the radiation exchange within a specular
tube (ref. 6), as shown in figure 4-10.

It is assumed that the imposed temperature or heating conditions
depend only on axial position and are independent of the location around
the tube circumference. To compute the radiative exchange within the
tube for axisymmetric heating conditions, it is necessary to have the
configuration factor between two ring elements on the tube wall. The
direct exchange (fig. 4-10(a)) is governed by the factor (see example
3-8, and note that |p—¢| in that example is equal to X/D here)

Dl
CEDN

Figure 4-10(b) illustrates the configuration factor for one reflection.

dFdx!-.tx= 1—- d.X

323-003 O-69—10
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(a) Direct exchange between two ring elements.
(b) Exchange by one reflection.
(c) Exchange by two reflections.

FIGURE 4~10. - Radiation exchange within specularly reflecting cylindrical tube.

Because of the symmetry of the tube, all of the radiation from dX, that
reaches dX by one reflection will be reflected from a ring element
halfway between dX, and dX. The ring at X/2 is only dX/2 wide so that
the beam subtending it will spread to a width dX at the location X.
The configuration factor for one reflection is then the factor between
dX, and the dashed element dX/2

e
dF _ 2D 4D | dX
- = 1= X \2 w2y
(o) +1]
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In a similar fashion, the geometric factor for exchangze between dX,
and dX by two reflections is given by

(£)3+_3£
_ 3D) "D |dx
dFdx‘ - 1 ) —[(_X)—z;-—l]-al_z —3-

and for n reflections

]

_ (n+1)D 2+ 1D dX

dFdX.-[dXI(nH)!"' 1- X 2 32 | n4+1
{[(n+1)D] +}

In general, the geometric factor for any number of reflections can be
found by considering the exchange between the originating element
(dX, in this case) and the element (call it dX;) from which the first re-
flection is made (the dashed element in figs. 4-10(b) and (c)). This is
because the fraction of energy leaving dX; in the solid angle subtended
by dX; remains the same through the succeeding reflections along the
path to dX.

At each reflection, the energy must be multiplied by the specular
reflectivity p,. If all the contributions are summed, the fraction of energy
leaving dX; that reaches dX by direct exchange and all reflection paths
provides the specular exchange factor

2 [+t
+lD 2+ 1D | X
dFXm_“ (n )X 2(" 3/)2 = (4'_44)
<n+1)0]+1}

When the geometry is even slightly more involved than the cylindrical
geometry, the reflection patterns can become quite complex. Some fur-
ther specific examples of radiation within a specular conical cavity and
a specular cylindrical cavity with a specular end plane are given in
reference 7. A more generalized treatment of nonplanar reflections is
given in reference 8.

EXAMPLE 4-6: A cylindrical cavity has a specularly reflecting cylindri-
cal wall and base (fig. 4-11(a)). Determine the fraction of radiation from
ring element dX; that reaches dX by means of one reflection from the
base with reflectivity p, and one reflection from the cylindrical wall with
reflectivity p,.
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f—— O ——and
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X, X,
_.1‘{ —-! o -”—- dxi2 —-1 r-—dx
1 1
e D
Il
le—x + X2 —=d |

X+ X {

(b
(a) Cavity geometry.
{b) Image of dX, formed by reflection in cavity base.
FIGURE 4-11. — Reflection in cylindrical cavity with specular curved wall and base.

As shown in figure 4-11(b), for this geometry, the reflected radiation
from the base can be regarded as originating from an image of dX,. The
second reflection will occur from an element of width dX/2 located mid-
way between the image dX, and dX. The desired radiation fraction is
given by the view factor from the image dX, to the dashed ring area
dX/2, that is,

(X+X.)3_+_3(X+Xu)
B 2D 4D dX
dF ax,-ax =P 1Pe,2 |1 — [ (X+ X,)z+1]w 2

2D

4.5 CONCLUDING REMARKS

In this chapter, the treatment has been presented of radiative inter-
change between specularly reflecting surfaces and in enclosures con-
taining both specularly and diffusely reflecting surfaces. In many
instances, as in example 4-5, the interchange of energy in enclosures is
modified only a small amount by the consideration of specular surfaces
in place of diffuse surfaces; however, in certain configurations, for
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example, those found in the design of solar furnaces, large effects of
specular reflection are present.

Bobco (ref. 9), Sparrow and Lin (ref. 10), and Sarofim and Hottel
(ref. 11) have examined radiative exchange in enclosures involving sur-
faces with a reflectivity having both a diffuse and a specular component.

Another remark may be apropos at this point. It has sometimes been
implied that the actual energy transfer between two real surfaces can be
bracketed by calculation of two limiting magnitudes: (1) interchange
between diffuse surfaces of the same total hemispherical emissivities as
the real surfaces, and (2) interchange between specularly reflecting sur-
faces of the same total hemispherical emissivities as the real surfaces.
This implication is not always true, however. Consider a surface which
has a reflectivity as given by figure 4-12(a) (this is the type of reflectivity
expected for the surface of the Moon). Now consider the radiant exchange
between this real surface 2 and a black surface 1 as shown in figure
4-12(b). If surface 2 is given specular properties, it will return no energy
to the black surface by reflection (fig. 4—-12(c)). If given diffuse properties,
it will return a portion of the incident energy by reflection (fig. 4—-12(d)). If
allowed to take on its real directional properties, however, it will reflect
more energy to the black surface than either of the so-called limiting
ideal surfaces (fig. 4-12(e)). Thus, the ideal directional surfaces do not
constitute limiting cases for energy transfer in general. Figure 5-11
demonstrates another case where diffuse and specular properties do not
provide limiting solutions. At best, calculations based on specular and
diffuse assumptions for the surface characteristics give some indication
of the possible magnitude of directional effects. Within enclosures, these
directional effects may be small because of the many reflections taking
place between the surfaces.
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Chapter 5. The Exchange of Thermal Radiation
Between Nondiffuse Nongray Surfaces

5.1 INTRODUCTION

The analysis of radiation exchange within enclosures, as discussed
in chapters 3 and 4, was restricted to cases where the enclosure surfaces
were either black or gray. If gray, the surfaces were assumed both to
emit and to reflect diffusely, or to emit diffusely and to reflect specularly.
The additional restriction was sometimes made that the radiative
properties were independent of temperature. As shown by the graphs
of real properties in chapter 5 of Vol. I, most engineering materials
deviate (in some instances radically) from the idealizations of being
black, gray, diffuse, specular, or having temperature-independent
radiative properties. In most practical engineering situations, the as-
sumption of idealized surfaces is made to simplify the computations.
This is often the most reasonable approach for two reasons:

(1) The radiative properties are not known to high accuracy especially
with regard to their detailed dependence on wavelength and direction;
hence, performing a refined computation would be fruitless when only
crude property data are available.

(2) In an enclosure, the many reflections and rereflections tend to
average out radiative nonuniformities; for example, the radiation leaving
(emitted plus reflected) a directionally emitting surface may be fairly
diffuse if it consists mostly of reflected energy arising from radiation
incident from all directions.

In order to gain some insight as to where simplifying assumptions
are at all reasonable, it is necessary to carry out some exchange com-
putations using as exact a solution procedure as possible. Then re-
sults of those computations can be compared with those obtained from
simplified methods such as these in chapters 3 and 4. To provide the
tools for making refined computations, some methods of treating the
radiative interchange between nonideal surfaces will be examined in
this chapter. Analysis of such problems is inherently more difficult than
for ideal surfaces, and a complete treatment of real surfaces including
all variations, while possible in principle when all radiative properties
are known, is seldom attempted or justified. As stated earlier, the
directional-spectral properties are often not available. Property varia-
tions with wavelength for the normal direction are available for a number
of materials; the data are usually sparse at the short- and long-wave-
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length ranges of the spectrum.! Directional variations for some materials
with optically smooth surfaces can be computed using electromagnetic
theory (chapter 4 of Vol. I).

Certain problems demand inclusion of the effects of spectral and
directional property variations and the methods presented here must be
utilized. One example would be the use of spectrally selective coatings
for temperature control in systems involving solar radiation.

5.2 SYMBOLS
A area
a, autocorrelation distance of surface roughness
C, C; first and second constants, respectively, in Planck’s spectral

energy distribution
perpendicular distance between parallel areas
emissive power
configuration factor
N fraction of blackbody intensity in spectral range 0 to A
function of emissivities in example 5-5
intensity
width of infinitely long parallel plates
L/D, parameter in example 5-6
energy rate; energy per unit time
energy flux; energy per unit area and per unit time
radius of disk in example 5-7
R/D, parameter in example 5-7
distance between area elements
absolute temperature
Y,z Cartesian coordinates
absorptivity
cone angle
emissivity
angle in plane perpendicular to surface
circumferential angle
wavelength
absorption efficiency defined in example 56
distance along width of plane surface having finite width
and infinite length
reflectivity

NUY AR~ AT D
]

M >ed "R R

©

1 The range for which data are ilable depends on the equi used in taking the data, and. of course, whether
dats have been gathered at all for the material desired. Typically. data are not available for most materials at wavelengths
of less than 0.3 um or greater than 15 um. If the common lead sulfide detector is used to obtain data, the sensitivity
limits measurementsa to less than about 3 um.
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o Stefan-Boltzmann constant

To root-mean-square amplitude of surface roughness

® solid angle

fo integration over solid angle of entire enclosing hemisphere
Superscripts:

’

directional quantity
bidirectional quantity

”

Subsecripts:

a absorbed

b blackbody

e emitted

i incident, incoming

k quantity for 4" surface
max maximum

min minimum

0 outgoing

r reflected

s specular

A spectrally dependent
AX average over wavelength region A\

1,2,3 property of surface 1, 2, or 3

5.3 ENCLOSURE THEORY FOR DIFFUSE SURFACES WITH
SPECTRALLY DEPENDENT PROPERTIES

By considering diffusely emitting and reflecting surfaces there are
no directional effects, and it is possible to see more clearly how the
spectral variations of properties can be accounted for. The surface
emissivity, absorptivity, and reflectivity are independent of direction,
but may depend on both wavelength A and surface temperature T. These
properties must be available as a function of T and A in order to evaluate
the radiative interchange between surfaces.

For diffusely emitting and reflecting spectral surfaces, the concept
of configuration factor is still valid since these factors involve only
geometric effects and were computed for diffuse radiation leaving a
surface. In general, then, the energy balance equations and methods
developed in chapters 2 to 4 remain valid so long as they are written for
the energy in each wavelength interval dx. Often, however, the boundary
conditions that are specified apply to the total (including all wavelengths)
energy, and care must be taken to apply the boundary conditions cor-
rectly. These total boundary conditions cannot generally be applied to




150 THERMAL RADIATION HEAT TRANSFER

@y for Q)

a0 "
for @ ~__["
.

[~~~

4Q)q (or Q)

N

FIGURE 5-1.— Spectral (or total) energy quantities at a surface.

the spectral energies. As an example, consider the surface of figure 5-1
having an incident total radiation Q; and a radiation leaving by combined
emission and reflection Q,. If the surface is otherwise perfectly insulated
(an adiabatic surface), then there is no heat Q being added externally
and Qi and Q, will be equal to each other,

Q:—Q:i=0=0 (5-1)

However, at a given wavelength, the incident and outgoing dQ» are not
necessarily equal, so that in general

dOrn—dQri=dQ,# 0 (5-2)

Rather, an adiabatic surface only has a total radiation gain or loss of
zero, or restating equation (5-1) in terms of the quantities in (5-2),

0= dor=[  (dQu-dou)=0 (5-9)

The dQ, is net energy supplied at A as a result of incident energy at
other wavelengths. At a given wavelength, the dQ. can vary widely
from zero for an adiabatic surface, depending on the property variations
with wavelength and the spectral distribution of incident energy.

More generally, consider now a diabatic? surface. The total energy

diabatic’ is tdared

*To quote Breene (ref. 1), *In certain circles awan' p ic synonym,’ and

the suthor quit using the term as scon as he discovered how bad it was.”
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added by external means to the surface is given by

Q=f:_° dQ).=J:0 (dQro — dOx) (54)

The Q may either be specified as an imposed condition, or may be a
quantity that is to be determined in order that a surface can be main-
tained at a specified temperature. In any small wavelength interval,
the net energy dQ\, —dQ\; may be positive or negative. The boundary
condition states only that the integral of all such spectral energy values
must be equal to Q. To become familiar with the use of these concepts,
they are now applied to some example situations.

EXAMPLE 5-1: Two infinite parallel plates of tungsten at specified
temperatures T and T (7,>T;) are exchanging radiant energy.
Branstetter (ref. 2) has determined the hemispherical spectral,
temperature-dependent emissivity of tungsten by using the relations
of electromagnetic theory to extrapolate limited experimental data,
and a portion of his results is shown in figure 5-2. Using these data,
compare the net energy exchange between the tungsten piates to that
for the case of gray parallel plates.

The solution for gray plates has been given in example 3-1. The
present case follows in the same fashion except that the equations are
written spectrally. From equations (3-1) and (3-2) the energy quantities

Temperature of
surface, T,
°K

Hemispherical spectral emissivity, e,\(x, 1 (]

A5
0
05— 0
I l | l 1 l | I L l ! l | I 1 } 1 [ ﬂ
0 2 4 6 g 10 12 14 1 18 X

Wavelength, A, um

FIGURE 5-2. — Hemispherical spectral emissivity of tungsten.
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at surface 1 per unit area and time in a wavelength interval d\ are
related by

dgx, 1 =dgro,1 — dqri, 1 {5-5)
dgre, 1 =€ 1(A, T ens, 1 (X, T)dA + pa, (A, Ti) dgui, (5-6)

For diffuse opaque surfaces, the hemispherical properties are related
by pr=1—ax=1—ex, and equation (5-6) becomes

dgre,1=6€r 1 (N, T1)exs, 1 (A, Th)dA + [1—ex(N, T1)])dgni s 5-7)
Eliminating dqu;, 1 from equations (5-5) and (5-7) gives

_ e (\Th)
Ao =10 (N Th)

[ex. 1 (A, T1)dX\ — dgao, 1] (5-8)

Since for infinite parallel plates, the configuration factor F2_,=1, then
Qri, 1= (oo, 2 (S€€ eq. (3—5b)) and equation (5-5) becomes

dqx, 1= dQAo, 1= dq>m. 2 (5-9)

Equations (5-8) and (5-9) are analogous to equations (3-8a) and (3-8b)
for the gray case. The equations for surface 2 are written in a similar
fashion. Then the dgx,’s are eliminated, and the solution for one wave-
length interval dA follows as in equation (3-10),

qu. l=—qu. 2_—=[ €\p, ll(Ay Tl) _ekb.lz()\' TZ) } d}\ (5_10)
1

e 1A, Tl)+€x.;:()\, T.)

The total heat flux exchanged (supplied to 1 and removed from 2)

‘is found by substituting the property data of figure 5-2 into equation

(5-10) and then integrating over all wavelengths,

Q|=—42=fo de.xsz [ = '1“\’ T‘)—mf“’ L) }dx (5-11)

+ -1
€, 1()\, Tl) GA.z()\, T,)

0

"The integration is performed numerically for cach set of specified plate

temperatures T; and T.
The results of such integrations, as carried out by Branstetter (ref. 2),
are shown in figure 5-3 where the ratio of gray-diffuse to nongray-diffuse
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Temperature
of hotter
surface,

energy exchange

Ratio of gray to nongray

7 | S I N I i
0 800 1600 2400 3200
Temperature difference between hotter and
cooler surface, Ty - Ty, °K

FIGURE 5-3.- Comparison of effect of gray and nongray surfaces on computed energy
exchange between infinite tungsten plates (from ref. 2).

exchange is given. The gray-diffuse results were obtained using equation
(3-10; with hemispherical total emissivities computed from the hemi-
spherical spectral emissivities of figure 5-2. (In the gray computation
by Branstetter, the emissivity of the colder surface 2 was inserted at
the mean temperature VT;T; rather than at T,, which is a modification
based on electromagnetic theory that is sometimes recommended for
metals (ref. 3)). Over the range of surface temperatures shown, devia-
tions of 25 percent below the nongray energy exchange are noted in the
gray results.

EXAMPLE 5-2: Two infinite parallel plates and their spectral emis-
sivities at their respective temperatures are shown in figure 5—4. What
is the total heat flux ¢ passing across the gap?

From equation (5-11)

q=J’3 exb, l(xy Tl)—exb. 2(A9 T-!) dk+f: €, l(xq Tl)—eM. 20\, T.’) d)\

0 1 1 1

04107 08707

+]' ex, 1A, T)—exs, 2(A, T) d\

s 1 1
08703 !
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FIGURE 5-4.—Example of heat transfer across space between infinite parallel plates hav-

ing spectrally dependent emissivities.

which can be written as

0.341 {3 0.596 (3
q= O-T? [ O'T? o €, I(As Tl)dx-{_—ﬁ?-fs €xp, l(h, Tl)dA
0.279 [~ 0.341 3
_O'Tf s €exp, I(A, Tl)d}\ ] - O'T; [ O'Tg . €xb, 2()\, Tz)dh
0.596 (3 0.279

e, 2(A, To)dA+

j" exn, 2(A, Tz)d)\ ]
5

oT} Ja oT}

5
An integral such as 0_17,4 f exs, 1A, T)dX is the fraction of blackbody
143
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radiation at T, between A=3 and 5 um, which is Fir,_sr, = Fs00-15000
and can be computed from the table of blackbody radiation functions

(table V in the appendix of Vol. I). The F\r-should not be confused with

the geometric configuration factor. Then
q= O’Tf(o.341 FO—ST; +0.596 F3T.—5T| +0.279 F.s‘r‘_a)

- G'T:(Os‘l-l Fo_:n', +0.596 F:IT,-ST, +0.279 FST; -x) = 43600 Btu/(hr)(ft’)

EXAMPLE 5-3: An enclosure is made up of three plates of finite
width and infinite length, as shown (in cross section) in figure 5-5. The

e f) w3 usfy o1

/’-Tl' (x‘ 1()\, Tl)

~

ol e

FIGURE 5-5.—Radiant interchange in enclosure with surfaces having spectrally varying
radiation properties.

radiative properties of each surface are dependent upon wavelength and
temperature, and the temperatures of the plates are Ty, T,, and Ts.
Derive a set of equations governing the radiative energy exchange among
the surfaces.

The configuration factors for such a geometry are derived in example
problem 2-15. The net spectral energy flux supplied to surface 1 can be
written as

_de.l_ EA.I(A»Tl) _ =
dqr 1= A I—e.nT) [exs, 1 (X, T )dN —dgro, 1]  (5-12)

and

a
dQA, 1=_Q>“ L= qu, 1—Fi-2 dqxo, 2—Fi_;3 dqm, 3 (5-13)
Ay

323-003 O-69—11
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These equations are derived in direct analogy with those for a gray
surface, equations (3-6) and (3-7), and by noting that F,_; =0. It should
be emphasized that dgx is the energy supplied to the surface in wave-
length interval d\ as a result of external heat addition to the surface and
energy transferred in from other wavelength regions.

Similar equations are written for surfaces 2 and 3. The result is a
set of six simultaneous equations for the six unknowns dgxo, 1, dgro, 2,
dgre.3, dgx. 1, dqa, 2, and dgy, 3. The solution is carried out for the dqx
in each wavelength interval dA.

If the properties of the surfaces are invariant over some fairly large
spectral interval A\, then the equations may be solved cver this entire
interval. In this instance, the emissive power ex, 1(A, T\)AX would be
replaced by oT4F.r,-+anr,, the amount of blackbody radiation at T,
in the interval from A to A+ AA. Finally, ¢ at each surface is found by
integrating dq) for that surface over all wavelengths

q= L dqx (5-14)

This is the heat flux that must be supplied to the surface externally in
order to maintain its specified surface temperature.

EXAMPLE 5-4: Consider the geometry of figure 5-5. Total energy
flux is supplied to the three infinitely long plates at the rates qi, gz,
and gs. Determine the temperatures of the plates.

The equations are exactly the same as in example 5-3. Now however,
the prescribed boundary conditions have made the problem much more
difficult to solve. Because the surface temperatures are unknown, the
emissivities are also unknown because of their temperature dependence.
The solution is carried out as follows: A temperature is assumed for each
surface, and dqa(\, T) for each surface is computed. The dgx(A, T)
values are then integrated to find ¢, gz, and gs, which are compared
to the specified boundary values. New temperatures are chosen and the
process is repeated until the computed g values agree with the specified
values. The new temperatures for successive iterations must be guessed
on the basis of the property variations and experience about the manner
in which changes in T are reflected in changes in q throughout the
system.

54 THE BAND ENERGY APPROXIMATION

The solution method presented and demonstrated in section 5.3 for
spectrally dependent surfaces has required integrations over all wave-
lengths in order to compute the net total energy transfer. These integra-
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tions are the complication that makes surfaces with spectrally dependent
properties so much more difficult to deal with than gray surfaces.
Shortcut methods are desirable for circumventing the tedious numerical
integrations that are required for rigorous solution of these problems.
Some loss of accuracy in the integration may be acceptable in a practical
application because of the uncertainty already present in many of the
spectral property values that are used.

5.4.1 Multiple Bands

One method of approximation of the integrals is the bdand energy
approximation. This is the conceptually simple approximation of replac-
ing the single integral extending over all wavelengths by a summation
of smaller integrals, where each of the smaller integrals extends over a
portion of the spectrum. An example will serve to illustrate the applica-
tion of this method.

EXAMPLE 5-5: Two infinite parallel plates of tungsten are at tempera-
tures of 4000° and 2000° K. Using the data of figure 5-2, compute the
net energy exchange between the surfaces by using the band energy
approximation.

In example 5-1, the net exchange between the plates is given by the
exact expression (eq. (5-11))

@ =_qz=f exs, 1A, Th) —ens, 2(A, T2) d
0

1 1
Ty T e T !

By using the substitution

1
G\
1,17
€r, 1 €2

to shorten the notation, this can be written as
- - .
a1 =f Gxe)‘b, 1 d)t -f Gxeu_ 2 dA
0 (1]

The integrals are now written as approximate sums

@ = (Garear.»,1 AX)1 =3 (Garear, 5,2 AN)m (5-15)
{ m
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where Gs, and eax.» are average values applicable to the wavelength
interval AX. Depending upon the way in which Gax and eax,» are eval-
uated, equation (5-15) can have various degrees of accuracy. As a
simple approximation the terms ea,» can be taken as an arithmetic
mean of the blackbody emissive power over AX. To obtain a better de-
gree of approximation for large AX intervals, eax, » can be evaluated using
the blackbody functions as

A+AA
€ax, b A)\=L exs AA=[Fo-o+an—Fo-2JoT* (5-16)

where A and A+ A\ are the upper and lower limits of wavelength for
the interval AX. Equation (5-16) will be used for the computations given
here. It was previously used to evaluate the exact integrals for a simple
problem in example 5-2. The Gax terms in equation (5-15) are approxi-
mated most simply by

S S
L1

Gar= (5-17

€Ar, 1 €A 2

where the €s\ are appropriate mean emissivities over the wavelength
interval AA.
In figure 5-6, the required emissivities of tungsten are plotted, and

Actual value
Band approximation

Hemispherical spectral emissivity, c,\u\, n

—ezzomoy
L l ] ‘ ! I J l 1 I l L Il l ! I | l 1 l
0 2 4 6 8 1 12 1 16 1B 2

Wavelength, A, um

FIGURE 5-6. —Band approximations to hemispherical spectral emissivity of tungsten.
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arithmetic mean values are shown for seven AM intervals (the seventh
interval being for A > 20um). For temperatures of 2000° and 4000° K,
the peak in the ex, function occurs at about 1.5 and 0.75um, respectively.
For large values of A, such as A > 4um in this example, the ey, is small
and Gyey will contribute little to the integrals in this wavelength region.
Thus, the accuracy of the averages at large values of A is not important
in this example. The computations for g, are carried out using these seven
intervals in the following tabulation:

ax, €1 | €z | Gan | eans 18X, | e 28N, [Carear 5,180 Carear 5, 28]
um W/cm? W/cm? W/cm? W/cm?

Otol 0.410 ] 0.445 | 0.271 | 0.698 x 103 | 0.0061 x 10%] 1.89x10* | 0.017 x 102

1t02 3351 .300 | .188 545 .0374 1.03 0N
2to4 290 195 | .132 A7 .034 .23 045
4t08 205| .140 ] .0907 | .032 .011 .03 010
8to 12 160 115 | .0717{ .004 .002 ~0 .002
12t0 20 1401 .095 | .0600 { .001 ~0 ~0 ~0
>20 ~0] ~01] ~0 ~0 ~0 ~0 ~0
Totals 3.18x10* ] 0.145 x 10%

Substituting the sums from the tabulation into the approximate band
energy exchange equatiop gives ¢:=(3.18—0.15) X 102=303 W/cm?2.

Branstetter (ref. 2), using numerical integration, found the exact
result of g, =300 W/cm? for this case. The approximate band solution
using seven intervals is thus in error by a very small amount. Examina-
tion of figure 5-3 shows that the gray body assumption, which can be
considered as a one-band approximation, yields answers that are
in error by almost 10 percent (note that the gray results in fig. 5-3
were modified from the usual gray analysis by inserting €; at VT T
rather than at T,).

A close examination of the tabulation shows that most of the significant
energy transfer for this example occurs in the wavelength range of 0 to
2 pum. If necessary, the accuracy of the band energy approximation
could be improved by dividing this range of most significant energy
transfer into a larger number of increments and repeating the calculation.
The errors in the band energy approximation will arise in the regions
where both ey, and €, are large; thus the wavelength range should be
divided such that most of the bands lie within these regions.

The band energy approximation is nothing more than a simple form
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of numerical integration carried out by using a relatively small number
of wavelength intervals. If the number of intervals is increased, the
exact results for energy transfer are approached. Dunkle and Bevans
(ref. 4) give a calculation similar to example 5-5 and show errors from
an exact numerical result of less than 2 percent for the band energy
solution as compared to about 30 percent error for the gray surface
approximation. They give other examples of applications in enclosures
with specified temperatures or net energy fluxes.

Some additional references providing analyses of energy exchange
between spectrally dependent surfaces are those of Love and Gilbert
(ref. 5), Goodman (ref. 6), and Rolling and Tien (ref. 7). In reference 5,
the analytical results compare well with experimental results for a
geometry closely approximating infinite parallel plates.

5.4.2 The Semigray Approximations

In some practical situations, there is a natural division of the energy
within an enclosure into two well-defined spectral regions. This is the
case for an enclosure with an opening through which solar energy
is entering. The solar energy will have a spectral distribution concen-
trated in a short wavelength region, while the energy originating by
emission from the lower temperature surfaces within the enclosure
will be in a longer wavelength region. A practical way of treating this
situation is to define a hemispherical total absorptivity for incident
solar radiation and a second hemispherical total absorptivity for incident
energy originating by emission within the enclosure. This approach can
be carried to the point of defining j different absorptivities for surface &,
one absorptivity for incident energy from each enclosure surface j.

The assumption entering these analyses is that each absorptivity
ai(Tx, T;) is based on an incident blackbody spectral distribution at
the temperature of the originating surface Tj. Of course, the incident
spectrum may actually be quite far removed from the Planckian form,
and this is the weakness of the method. Often, the dependence of ax
on T is small, so that the principal dependence is on T or, in other
words, on the distribution of the incident spectrum. Because the absorp-
tivity ax(Tx, T;) and emissivity €x(Tk) of surface k are not in general
equal, this approach is often called the semigray enclosure theory.
Reference 8 contains the formulation of a semigray analysis for a general
enclosure.

Plamondon and Landram (ref. 9) have compared the semigray and
exact solutions of the temperature profiles along the surface of a nongray
wedge cavity exposed to incident solar radiation, as shown in figure 5-7.
The wedge cavity is assumed to be nonconducting, to be in a vacuum
with an environment at zero degrees except for the solar radiation, to
have properties independent of surface temperature, and to have



EXCHANGE FOR NONDIFFUSE NONGRAY SURFACES 161

e ———
et Sotar
- radiation
A —

950~

Method |
800+ V4
Exact‘\

750+ \
Method 11

700—L 1
0 .5 Lo

Dimensioniess distance
from vertex, x/L

(b}

Temperature, T(x/L), °R

(a) Geometry of wedge cavity. .
(b) Temperature distribution along wedge. dppiar = 0.220; dinprared = 0.099.

FIGURE 5-7. —Effect of semigray approximations on computed temperature distribution in
wedge cavity.

diffuse surfaces. Three solution techniques are given in reference 9.
The first is an exact solution of the complete integral equations and is
called the “‘exact” solution. The first approximation to the exact solution,
called *“Method I,” is the semigray analysis which assigns an absorp-
tivity aouar for radiation (direct and reflected) that originated from the
incident solar energy, and a second absorptivity @insrares (equal to the
surface emissivity) for radiation originating by emission from the wedge
surfaces. Finally, ‘““Method II” is a poorer approximation that retains
the same two absorptivities but applies asar only for the incident solar
energy, and then uses inprarea for all energy after reflection, regardless
of its source. The results of these methods are shown in figure 5-7(b)
for a polished aluminum surface in a 30° wedge. Method I, the full
semigray analysis, is seen to give excellent agreement with the exact
solution while Method II underestimates the exact temperatures by
about 10 percent.




162 THERMAL RADIATION HEAT TRANSFER

5.5 DIRECTIONAL-GRAY SURFACES

Some attention has been paid to the development of treatments of
radiation interchange between surfaces or in enclosures where direc-
tionally dependent properties must be considered. The bulk of radiation
analyses invoke the assumption of diffuse emitting and reflecting
surfaces although some treatments do include the effect of specular
reflections as outlined in chapter 4. The diffuse or specular surface
conditions are convenient to treat analytically and in most instances
the detailed considerations of directional emission and reflection effects
are unwarranted. There are, nevertheless, certain materials and certain
geometric situations that require the consideration of directional effects.
In this section, some methods of considering radiant interchange
between surfaces with directional properties will be presented.

The difficulty in treating the general case of directionally dependent
properties is perhaps best illustrated by performing an energy balance
in a simple geometry. Let such a balance for the radiative interchange
between two infinitely long parallel gray nondiffuse surfaces of finite
width L (fig. 5-8) be examined. The intensity of radiation leaving element

dAz, Tz, ("Bz, 62)

S skt S S L L

i1, /By, 8

sincr ) 0 777777
| 77 ATy, €8y, 8p) ‘ l
f L !

FIGURE 5—8.;Radianl interchange between infinitely long parallel directional surfaces
of finite width L.

dA, in direction (8, 8) is composed of an emitted intensity i, B1, 61)
and a reflected intensity i;' (B1, 61), or

i[(B1, ) =1i1, (Br, 01) + i1, {B1, 61) (5-18)

These two components are given by modifications of equations (3-3a)

and (3—25) of Vol. I as
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i1, ¢(B1,601) =€1(By, 01)ip, (T) (5-19)

and

i1 (81, 0= [ 07081, 00, B, B0)i4(s, B0 cosfrcos B 4,
(520
In equation (5-20) the energy incident upon dA4; from each element
dA; is multiplied by the bidirectional total reflectivity p} to give the
contribution to the reflected intensity from dd, into direction (8,, 61).

This is then integrated over all energy incident on d4, from A,. The
definition of p” is that given in Vol. I, which is

i:(Bh 07‘9 ﬁ, 0)
ii (B, 8) cos B dw

p"(Br, 6:,8,0)= (5-21)

The p"(B8-, 6, B, 68) is the ratio of reflected intensity in the (8, 6;)
direction to the energy flux incident from the (8, 6) direction.
Equation (5-18) for the intensity leaving the element d4, then becomes

(81, 00) = €181, 00)i4, 1 (T + [ (81, 0, 8r, )81, 00) 2522

(5—22)

A similar equation may be written for an arbitrary element d4. on
surface 2. This results in a very complicated coupled pair of integral
equations that must be solved for i’(8, 8) at each point and for each
direction on the two surfaces. This set of integral equations is analogous
to equations (3—50) that were derived for gray-diffuse surfaces. Tabulated
property data of €'(8, 6) and p"(8-, 6-, 8, 8) for such a situation are seldom
available. For the case when T, and T; are not known and the temperature
dependence of the properties is considerable, the solution of the entire
energy exchange determination becomes prohibitively tedious. To
avoid the extreme amount of computation, a number of approximations
can be invoked in the situations where they are justificd. Some of these
methods are outlined in references 10 to 14. Rather than try to present
all the possible approximations, an example will be given, and the
reader is left to his ingenuity in approximating the conditions of more
realistic problems. Usually, such approximations involve analytically
simulating the real properties by simple functions, omitting certain
portions of energy that are deemed negligible, or ignoring all directional
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effects except those expected to provide significant changes from
diffuse or specular analyses.

EXAMPLE 5—6: Two parallel isothermal plates of infinite length and
finite width L are arranged as shown in figure 5-9a). The upper plate 2

/E
Normal to
hase plane

M1, min

~ ¢ for actual
grooved surface

AN
\ Hemispherical
€~ 0,652

1 ] L }90
100 .75 .% .25 O .5 % .75 00
Directional emissivity, €'iny)

(b

(a) Geometry of problem. (Environment at zero temperature.)
{(b) Emissivity of directional surface.

FIGURE 5-9. — Interchange between grooved directional surface and black surface.

is black while the lower is composed of a highly reflective material with
parallel deep grooves of open angle 1° cut into the surface and running
in the infinite direction. Such a surface might ke made by stacking pol-
ished razor blades. Compute the net energy gain by the directional sur-
face if T» > T, and compare the result to the net energy gain by a diffuse
surface with emissivity equivalent to the hemispherical emissivity of
the directional surface. The surroundings are at zero temperature.
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The directional emissivity for the grooved surface is obtained from
reference 15, where the directional emissivity at the opening of an in-
finitely long groove with specularly reflecting walls of surface emis-
sivity 0.01 was calculated. The directional emissivity for the grooved
surface is given by the dot-dashed line in figure 5-9(b). The angle 7
is measured from the normal of the base plane of the grooved surface
and is in a plane perpendicular to the length of the groove as shown in
figure 5-9(a). The €}(m), as given in reference 15, has already been
averaged over all circumferential angles for a fixed 1. Thus, it is an
effective emissivity from a strip on the grooved surface to a parallel
infinitely long strip element on an imaginary semicylinder over the
groove and with its axis parallel to the grooves. The angle 7, is different
from the usual cone angle 8,. The angle 8, would vary along the strip
element of the semicylinder while 1, remains constant since it is the
projected angle on a plane normal to the groove. The actual emissivity
€(m) of figure 5-9(b) is approximated for convenience by the ana-
lytical expression

(’1(7)1) == 0.830 cos m

By using cylindrical coordinates to perform the integration over all
m, the corresponding hemispherical emissivity of this surface is

»/2
f €i(m) cos N1 dm
& -2
el = ==

™2
@ f cos 1 dm

-~m/2

1w/
=0.830 f * cos? ny dnu=0.652
0

and this result is shown in figure 5-9(b) as a dashed line.

The energy gained by surface 1 when 2 is a black surface and 1 is
a diffuse surface with €=0.652 will first be determined. The energy
emitted by the diffuse surface per unit of the infinite length and per
unit time is

Qe 1=0.652 o TiL

Since surface 2 is black, none of this energy will be reflected back to 1.
The energy per unit length and time emitted by surface 2 that is absorbed
by surface 1 is

Qa,1=0.6520T}% f

As J 4,

dF;n—dx Mz = 0.6520’7'; j

dFa1-a2 dA,
Ay J A, -
The desired energy gained by 1 is Q4,1 —Q,:- To evaluate Qg,,, the
configuration factor between infinite parallel strips was found in ex-
ample 24 as
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d(sin 1'1)

dF g a2 = 2

By integrating over A, the double integral becomes
1 [t
f (,L dFdl-dz) d-Al="J. (sin m, maz — $in ™, min)dx
Ay 2 2 Jz=o
The value of sin 7; is found from figure 5-%a) to be

L {—x
T (e —x) + D

and, solving now for Qq, 1, gives

Qa1=0.652o'T‘lJ-L [ L—zx = ]
, 29 ) ool (x2—2xL+ L2+ D2)V2  (x2+ D2)ju2

=0.652 T4 [(L2+ D?)»—D]

The net energy gained by surface 1, Q4.1 —Q., 1, divided by the energy
emitted by surface 2 is a measure of the efficiency of a surface as a
directional absorber. For surface 1 being diffuse, this ratio is

= Qa1 — Q.1 0.652 Ts
= = % = /2= ] o= —
B g =727 : [(1+12)1 1 ng]

Ratio of surface

Directional surface temperatyres,

~ ——— Diffuse surface (Ty/To

2 ==
-.8L NN | 'llllll [ Illl[ll |, [LJIL]
.01 1 1 10 100

'Plate width to spacing ratio, = LID

FiIGURE 5-10. — Effect of directional emissivity on absorption efficiency of surface.
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where [=L/D.

The analysis for surface 1, being a directional (grooved) surface,
will now be carried out. The emitted energy from 1 is the same as that
for the diffuse surface since both have the same hemispherical emis-
sivity. The energy absorbed by the grooved surface is

Qa,1=0'T£L J; a;('ﬂl)dpdz—dldA'z

0.8300T% [+ (™, maz
=——22——2-L_0 f cos? 7y dmidx

M, min

m, max

= (sinm cos mi+m)

_ 0.830 0T} fL 1
- 2 =y 2

™, min

=0.8320’T;L’;0 [( D(L—x) +tan-1 (L_—_JE)

x2—2xL+ L2+ D?) D
xD X
+xz+Dz+tan 1D]dx

0.830 oTAL L
Qui==—g '}

The absorption efficiency E of the directional surface is then

B directionat =———tan~' [ —0.652| —+

0.830 (T. ‘
2 T, )
The absorption efficiencies = of the grooved and diffuse surfaces are
plotted in figure 5-10 as a function of [ with (T,/T2)* as a parameter.
It is seen that = for the directional surface is higher than that for the
diffuse surface for all values of [, indicating that the directional surface
will always be a more efficient absorber in this configuration. As [ ap-
proaches zero, the configuration approaches that of infinite elemental
strips, and emission from surface 1 becomes much larger than the ab-
sorption from surface 2. Thus, Zdigue and Edirecrionar are nearly equal
since the surfaces always emit the same amount. As [ approaches in-
finity, the configuration approaches infinite parallel plates for which
directional effects are lost. Again, the E becomes equal for the two
different surface conditions. At intermediate values of [, a 10-percent
difference in absorption efficiency appears attainable.
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The effects of directional properties on the local heat loss can be a
considerable factor in many geometries. In figure 5-11, a number of
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FIGURE 5-11. — Local radiative energy loss from surface of isothermal groove cavity. (Hem-
ispherical emissivity of surface, 0.1.)

assumed directional distributions of reflectivity are examined for their
influence on the local heat loss from the walls of an infinitely long
groove cavity. The results are taken from reference 12 where, for com-
parison, the curves were gathered from original work and from diverse
sources (refs. 13, 14, 16, and 17). The walls of the groove are at 90° to
each other, and the surface emissivity distributions are all normalized
to give a hemispherical emissivity of 0.1. Curves are presented for dif-
fuse reflectivity p, specular reflectivity assumed independent of incident
angle p), specular reflectivity dependent upon incident angle p(8)
based upon electromagnetic theory, and three distributions of bidirec-
tional reflectivity p”(8r, B). The bidirectional distributions are based
on the work of Beckmann and Spizzichino (ref. 18) for rough surfaces
having various combinations of root-mean-square optical surface rough-
ness amplitude to radiation wavelength ratio o,/A and roughness auto-
correlation distance to radiation wavelength ratio ao/A.
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Note that the results shown in figure 5-11 for the simple specular
and diffuse models do not provide upper and lower limits to all the
solutions as is sometimes claimed.

56 SURFACES WITH DIRECTIONALLY AND SPECTRALLY DEPENDENT
PROPERTIES

The general case of radiative transfer in enclosures with surfaces
having temperature-dependent radiative properties that depend on both
wavelength and direction is a most complex and difficult one to treat
fully. Closed-form solution of such problems is not possible unless
many restrictive assumptions are introduced. When such problems
must be treated, numerical techniques are necessary. The Monte
Carlo method is a likely candidate, and example applications of the
method to simple directional spectral surfaces is made in chapter 6.
Toor (ref. 13) has studied radiation interchange by the Monte Carlo
method for a variety of simply arranged surfaces with directional
properties.

In this section, the general integral equations for radiation in such
systems are formulated, and one considerably simplified example
problem is carried out. The procedure is a combination of the previously
considered diffuse-spectral and directional-gray analyses. The equa-
tions will be formulated at one wavelength as in section 5.3 and will
also be formulated in terms of intensities as in section 5.5. In this
manner, both spectral and directional effects can be accounted for.
For simplicity, the interaction between only two plane surfaces will
be treated. This treatment can then be generalized to a multisurface
enclosure as has been done for gray surfaces in chapter 3.

Consider an element dA4,; of surface A, in the x—y plane as shown in
figure 5-12. The surface is isothermal and has directional spectral
properties. Consider the spectral radiation intensity outgoing from dA,
in direction (8,1, 6r,1) by means of both emission and reflection. The
spectral intensity emitted by d4, in direction (8;, 1, 0r,1) is

i'Ae, I(Av B". 1y 07', l) = e:\. l()\v ﬁ". 1y 67‘, l)i;b. 1()‘) (5—23)

These quantities are also functions of T, but this designation is omitted
to simplify the notation somewhat. The intensity reflected from d4,
into direction (B;,, 8-,1) results from the intensity incident from A,.
It would be desirable to have an expression for the intensity incident
within solid angle dw,; then by integrating over all such dw,, the incident
radiation from all of 4, would be accounted for. If the incident intensity
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FIGURE 5-12. — Interchange between surfaces having directional-specular properties. (En-
vironment at zerc temperature.)

within de, is called i};,,(A, B1, 61), then the energy reflected from d4,
into direction (Br, 1, 0r,1) is

1O\ Broty Or.1) =L DL (0 Brv1s Br.1s Bry B)ike, 1 (M, Bus 6)
cos Bidwn (5-24)

The surroundings are taken to be at zero temperature so that the only
incident intensity is that from A4.. The spectral intensity outgoing from
dA, in direction (Br,1, 8-,1) is then the sum of emitted and reflected
quantities

i;n, 1(Ay Br. 15 0-,1)= L;‘g. 1()% Br, 1, 0r 1)+ l;r 1()\q Br. by er, 1)
=6}:, 1 (Av Br. 1, 07‘, l)i)\,b, 1 (A)

+J‘A p;, l(xq Bf, 1y 01’, lvBl, 01)1:’“. l(}\, B[, 01) [o{8 1.} B] dw‘
{5-25)
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In equation (5-25) the i}; (A, Bi, 61) results from the outgoing intensity
iro, 2(N, Bz, 62) from surface 2. This outgoing intensity is composed of
both emitted energy and energy incident from 1 that is reflected. The
energy leaving dA: that reaches dA, is

iio. z(x,ﬁz, og)dAz cos Bz dAl cos 31/52

In terms of the incident intensity iy; (X, 81, 61), the incident energy in
dw: is

ini 1\, B, 01)dA, cos By dan  or &, | (X, B, 81)dA, cos B dA; cos B:/S?
Thus,

i, 1\ B, 80)=15, 5(A, Bz, 62) (5-26)
Substituting equation (5-26) into equation (5-25) gives
iro, 18 Br, 1, Or, 1) =€,y (A, Br, 1, 07, 1)y, | (N)

+L Py (N, Br. 1, 0r, 1, Br, 1)is, 2N, B2, 82) cos Brdwy  (5-27a)

Similarly for surface 2
iro, 2(N, Br.2, Or,2) = €, 5(X, Br 2, Or 2)i}, 2(A)

+f P:, 2 (R, Br. 2, 0?, 2 B’h 0‘2)1.;‘0' ,()\, Bl, 01) cos ,Bz dwz (5—27b)
4y

Equations (5-27) are both in terms of outgoing intensities. Thus, they
form a set of simultaneous integral equations for i), , and i), ,. An
iterative numerical solution technique would generally be required.
The radiative properties and temperature can, in general, vary across
each surface.

When the i}, , and i, , have been obtained, the total energy can be
determined that must be supplied to each surface element to maintain
the specified surface temperature. The total energy supplied is the dif-
ference between the total emitted energy Q. and the total absorbed
energy ;. For element dA,,

323-003 O-69—12
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do| =d0e, 1 —dOa, 1 =dA|j; o J‘QE;" I(A, Bl' 0,)1;,,' 1(}\) cos8 B| dwl dA
~dd, fx o f 1A Br, 85, 0, Br, B1) cos B duwr N
=0 4y
dQl =€1O‘Tf dAd,—dA, f)‘ of,q a;‘ ;(}\, Bh 6, )i;‘,,z()\,ﬁz, &)

E‘igfﬁﬁdfh A (5-28)

where ¢, is the hemispherical total emissivity of surface 1.

If dQ:(x, y) rather than T(x, y) is specified, then Ti(x, y) must be
determined, and the solutions can be quite tedious. A temperature
distribution must be assumed for each surface, and the set of equations
of the form of equations (5—27) solved to find i}, at each point. These out-
going intensities are substituted into equation (5-28), and the computed
dQ, from equation (5—28) is compared to the given values. Adjustments
are then made in the assumed distribution of temperatures, and this
procedure is repeated until agreement between given and computed
dQ,(x, y) is attained.

EXAMPLE 5~7: A small area element d4,; is placed on the axis of
and parallel to a black circular disk as shown in figure 5-13. The element
is at temperature T; and the disk is at 7. The environment is at T=0.
The element has a directional spectral emissivity that is independent
of @ and can be approximated' by the expression

€, (A, B1, Tr) =0.8 cos By (1 —e~C¥ )

where C; is one of the constants in Planck’s spectral energy distri-
bution. (As will be evident, this distribution was chosen to simplify
this example.) Find the energy dQ; added to dA4; in order to maintain it
at T;. Assume that T, is close to 7.

Equation (5-28) can be employed immediately because i}, , is known
from the specification of 4; being a black surface. The emitted energy
from dA, is given by

dQe’l=€|0'T: dAl-‘:dAlJ; ofo ei,l(k, B])i;b,l()\) cos ﬁ] dwl dk

Now insert the expressions for €, ;, is,,; ((eq. 2-1la) of Vol. I), and
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Ty €5 =
dA =, 22
dA
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81, max
0
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FIGURE 5-13. —Energy exchange involving directional-spectral surface element. (Environ-
ment at zero temperature.)

dw1=sin B1 dB\ d81 to obtain
~ - _ 2,
401 =08, [ [ cos pi(1—eown) T
X cos Bl sin Bl dB] d6; d\

=0.8 dAl (fﬂ 0082 B] sin Bl dB] d61> 'LCL_ dk

A=0 ASeCJATl

Carrying out the integral over the hemisphere gives

dQ..1=0.8 dd, (2—’—’) r 24

3/ Jo N3eCaAT:
Use the transformation {=C,/AT;

- Amy 1 ¢
dQe.x—0.8dA1( 3 ) . C;ecdg

Then using the relation f Pe~ d{=23! (ref. 19) gives
(V]
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4

dQ.,,=6.4 dd, Cum 1
Ci
But the Stefan-Boltzmann constant o =2C,7%/15C# so that

doe,x=% O’Tf d4,

The energy absorbed by dA, is

. | »
dQq, 1=dA, L . L al(\, Br, 00)i%, 2(As B, O2) — B ‘;sﬁ’ 2 A\

By using Kirchhoff’s law, the directional spectral absorptivity and emis-
sivity can be equated without restriction. Then, for d4, taken as a ring
element, the solid angle cos B: d4:/S? can be written as 27 sin B dfh.
This is used to write the absorbed energy as

an,,=21r(0.8)udAlj' J‘Bl, m(cosz B1 sin B dByiry, 2 (1—e=C¥ATy) )
r=0 Jgymo

— 16w dd, cos? By |81 maz (= 2C,(1 — e=C¥A ™)

3 ° o )\s(ec‘alkr: — 1)
_3.2nC, dA, [1_ D ] =l—gCm
3 (Dz+ Rz)alz 0 )‘s(er/xh — 1)

If the approximation is invoked that T, is close in value to T., the inte-
gration over A can be carried out with the following result:

48 1
Qa,¢:=—ﬂ;[l—m] oT? dd,

where r=R/D. Finally, the heat added to d4, to maintain it at T, is given
by

dQl=dQe.1—an.x=%{Tf—T£ [1—(—1—:}_1’2—)3,2-]} d4,

Even for this illustrative example, it was difficult to construct a realistic
analytical function for €, that could be integrated in closed form over
both angle and wavelength. Almost invariably, it is necessary to use
numerical methods to obtain solutions to problems of this type.



EXCHANGE FOR NONDIFFUSE NONGRAY SURFACES 175

5.7 CONCLUDING REMARKS

Although the formulation of radiation exchange problems involving
directional and/or spectral property effects is not conceptually difficult,
it is often very tedious to obtain solutions to the resulting integral
equations. To simplify the equations, it is necessary to invoke many
assumptions and approximations. The approximations that can be
invoked with validity vary from case to case and are so numerous that
they have not been discussed in any depth. Numerical techniques of
many types can be used for directional spectral problems since closed-
form analytical solutions rarely can be obtained. The number and
range of conditions and parameters in. these problems preclude the
specification of any one numerical technique as being the best. As
more and more interchange problems of this type are investigated,
perhaps the most valuable techniques will emerge from the present
unresolved jungle of individual solutions. One technique is the Monte
Carlo method, which is the subject of the next chapter.
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Chapter 6. The Monte Carlo Approach to Radiant
Interchange Problems

6.1 INTRODUCTION

In chapter 5 it was found that the enclosure theory analysis became
very complex when directional and spectral surface property variations
were accounted for. An alternate approach that can deal with these
complexities of radiation interchange is presented in this chapter; this
approach is the Monte Carlo method.

Since Monte Carlo is a statistical numerical method, it is first neces-
sary to discuss some of the concepts of statistical theory. Then the basic
procedure is outlined with regard to radiative exchange; to demonstrate
the method, two example problems are formulated. Because the use of
Monte Carlo requires a digital computer, complete example problem
solutions are not given. Only the straighforward Monte Carlo approach
will be presented. The many refinements that can shorten computation
time by increasing accuracy will only be mentioned in passing.

A general view of the radiation heat transfer problems solved in the
literature by Monte Carlo will be given. This will further show how the
method can be utilized and will provide a source for available techniques
that have been developed. Much of the material presented here is taken
from reference 1.

6.1.1 Definition of Monte Carlo

Herman Kahn (ref. 2) has given the following definition of the Monte
Carlo method which seems to incorporate the salient ideas: “The ex-
pected score of a player in any reasonable game of chance, however
complicated, can in principle be estimated by averaging the results of
a large number of plays of the game. Such estimation can be rendered
more efficient by various devices which replace the game with another
known to have the same expected score. The new game may lead to a
more efficient estimate by being less erratic, that is, having a score of
lower variance or by being cheaper to play with the equipment on hand.
There are obviously many problems about probability that can be viewed
as problems of calculating the expected score of a game. Still more,
there are problems that do not concern probability but are none the less
equivalent for some purposes to the calculation of an expected score.
The Monte Carlo method refers simply to the exploitation of these
remarks.”

177
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This definition also provides a good outline for use of the method.
Indeed, what must be done for a specific problem is to set up a game or
model that obeys the same behavior and hence is expected to produce
the same outcome as the physical problem which the model simulates;
make the game as simple and fast to play as possible; then play the game
many times and find the average outcome. After some remarks on the
history of the method and on the approach being taken here to sum-
marize and outline it, this formalism will be applied to problems in
radiative heat transfer.

6.1.2 History

The history of *‘experimental mathematics” can be traced quite
far into the past. Hammersley and Handscomb (ref. 3) give references
to over 300 works dealing with Monte Carlo and closely related material
published over the last six decades. They mention a determination of
the value of 7 by a mathematical experiment performed some thousands
of years ago (ref. 4). However, the great bulk of the literature has
appeared since 1950.

Many early workers actually carried out numerical experiments
by such means as throwing dice or playing card games many times
over to determine the probability of a given outcome, but useful results
from such methods awaited the unique abilities of high-speed digital
computers. These machines could play simulations of the game at a
high rate and thus compile accurate averages in a reasonable time.

Credit for development of Monte Carlo techniques, as they are
presently used in engineering and science, goes to the extremely com-
petent group of physicists and mathematicians who gathered at Los
Alamos during the early work on nuclear weapons, including especially
John von Neumann and Stanley Ulam.

6.1.3 General References

Referring to “the” Monte Carlo method is probably meaningless
although such terminology will be applied. Any specific problem more
likely entails “a” Monte Carlo method, as the label has been placed on a
large class of loosely related techniques. A number of general books
and monographs are available that detail methods and/or review the
literature. A valuable early outline is given in reference 5, which is the
first work to use the term ‘“Monte Carlo”™ for the approach being con-
sidered here. For clarity and usefulness, both references 2 and 3 are
valuable, as are the general texts by Cashwell and Everett (ref. 6);
Schreider (ref. 7) (who gives 282 references, many to the foreign liter-
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ature); Brown (ref. 8); and the many excellent papers gathered in the
symposium volume edited by Meyer (ref. 9).

The references cited give mathematical justification for some of the
methods employed in Monte Carlo. Those who cannot sleep withosut
such reassurance are urged to read these works carefully. Here, how-
ever, it is intended to give arguments based on physical foundations,
with emphasis on why the mathematical forms evolve. No attempts to
provide proofs of statistical laws will be made; the standard texts in
statistics carry out these proofs in detail.

Some mention should be made about the machine running time of
Monte Carlo programs. No definitive method of predicting running
time exists for most problems. The time used will depend, of course,
on the machine used, and, perhaps, more strongly on the ability of the
programmer to pick methods and shortcuts that will reduce the burden
on the machine. An example of such a shortcut is the use of special
subroutines for computation of such functions as sine and cosine.
These routines sacrifice some accuracy to a gain in speed. If problem
answers accurate to a few percent are desired, then the use of eight-
place functions from a relatively slow subroutine is a needless luxury,
especially if the subroutine is to be used tens of thousands of times.

Finally, only this paragraph will be devoted to the fruitless argument
as to whether Monte Carlo or some other method is a “better” way of
attacking a given radiation problem. Suppose that a set of integral
equations must be solved simultaneously in order to obtain an analytical
solution to a given physical problem. A Monte Carlo solution of a physical
analog may lead to a lengthy computer run. The question facing the
programmer is then: Is it better to program the solution of the integral
equations by finite difference iterative techniques, with the possibility
that convergence to correct solutions will not be attained because of
round-off errors or instabilities, or by Monte Carlo, which, though long
running, will give the answer sooner or later? In general, there can be no
reply to this question. Only the background and intuition of the individual
researcher can give some clue as to the most likely direction of attack.
It is hoped that the following material will provide a basis for such
decisions.

6.2 SYMBOLS
A surface area
A,B,C,D . .. constants
E exchange factor including direct exchange and all
reflection paths
Fo-a fraction of total energy emitted by a blackbody in

wavelength range of O to A
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frequency distribution of events occuring at £

total number of subsets used to compute mean

radiant intensity

lattice indices in square mesh corresponding to
x, y positions, respectively

total number of sample bundles per unit time

individual sample index

probability density function

mean of calculated values of P

energy per unit time

number chosen at random from evenly distributed
set of numbers in range 0 to 1, random number

number of events occurring at some position

temperature

energy carried by sample Monte Carlo bundle

positions in Cartesian coordinate system

radiative surface absorptivity

cone angle

standard deviation defined by eq. (6—15)

indices in computer program, fig. 6—7

radiative surface emissivity

function defined by eq. (6—14)

circumferential angle

wavelength

probable error

variable

Stefan-Boltzmann constant

blackbody

emitted

spectrally dependent
at surface 1 or 2

quantity in one direction
bidirectional quantity
denotes dummy variable

6.3 DETAILS OF THE METHOD
6.3.1 The Random Walk

Any reader looking into the background of the material to be presented
here will soon encounter the term Markov chain. A Markov chain is sim-

e o = e e | o Syt o+ ix ek e e sl e mmimes mm e e s - P [T ——
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ply a chain of events occurring in sequence with the condition that the
probability of each succeeding event in the chain is uninfluenced by
prior events. The usual example of this is a totally inebriated gentleman
who begins a walk through a strange city. At each street corner that he
reaches, he becomes confused. In continuing his walk, he chooses com-
pletely at random one of the streets leading from the intersection. In
fact, he may walk up and down the same block several times before he
chances to move off down a new street. The history of his walk is then a
Markov chain, as his decision at any point is not influenced by where he
has been.

Because of the randomness of his choice at each intersection, it might
be possible to simulate a sample walk by constructing a “four-holer”;
that is, a roulette wheel with only four positions, each corresponding to
a possible direction. The probability of the gentleman starting at his hotel
bar and reaching any point in the city limits could then be found by simu-
lating a large number of histories, using the four-holer to determine the
direction of the walk at each decision point in each history.

It might be noted that the probability of the man reaching intersection
(!, m) on a square grid representing the city street map is simply

P, my=L(PU+1, m)+PU—1, m)+PU, m+ 1)+ P(l,m—1)]
4 6-1)

where the factors in the square bracket are the probabilities of his being
at each of the adjacent four intersections. This is because the probability
of reaching P(l, m) from a given adjacent intersection is one-fourth.
This type of random walk is a convenient model for processes that are
described by Laplace’s equation; equation (6—1) is recognized as the
finite difference analog of the Laplace equation.

The probability of a certain occurrence for other processes is usually
not as immediately obvious as is the case for equation (6—1). More often,
the probability of an event must be determined from physical constraints,
and then the decision as to what event will occur is made on the basis
of this probability. Some of the basic methods of choosing an event from
a known probability distribution of events will now be examined. Also,
means of constructing these distributions will be discussed.

6.3.2 Choosing From Probability Distributions

Consider a very poor archer firing arrows at a target with an outer
radius of 10 feet. After firing many arrows, the number of arrows F(£)
that are found to have struck the target within a small radius increment
A¢ about some radius £ can be represented by a histogram of the fre-
quency function f(£)=F(£)/Af. A smooth curve can then be passed
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FIGURE 6-1.—Frequency distribution of arrows at various target radii.

through the histogram to give a continuous frequency distribution, perhaps
similar to that of figure 6~1. What is now needed is a method for simu-
lating further shots. This method should assign an expected radius ¢
on the target to each of a group of succeeding arrows. In addition, the
distribution of & values should correspond to the frequency distribution
that the archer has previously fired as shown in figure 6—1. (It is assumed
that all his arrows have hit somewhere on the target.)

This situation is analogous to that encountered in many Monte Carlo
processes. The distribution of values that occurs in a given physical
process is known, and a method of assigning values to individual samples
is desired so that the distribution of values for all the samples will agree
with the required distribution. In radiant heat transfer, for example, it
is known that the distribution with wavelength of the spectral energy
emitted by a blackbody must follow the Planck spectral emission curve.
How are individual energy “bundles” of radiation each assigned a wave-
length so that, after a large number of bundles are emitted from a black-
body, the distribution of emitted energy is indeed Planckian?

In addition, for a Markov process, the values at each step must be
assigned in a random manner so that each decision in the chain is
independent.

Following the archer’s progress will show how this is done. The fre-

quency curve given in figure 61 can, in this case, be approximated by
the analytical expression
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f)=¢ (6-2)
in the interval 0 < £ < 10, and f(£)=0 elsewhere because all the arrows

struck the target. Equation (6—2) is normalized by dividing by the area
under the frequency curve (i.e., the total number of arrows) to obtain

Piey= e —= 35 (6-3)
| fi€)dé

If the frequency with which arrows have struck the target radii is taken
as the basis for estimating the locations the next set will strike, then
the probability density function defined by equation (6-3) is the average
distribution that must be satisfied by the ¢ values determined by the
simulation scheme. The probability density function is plotted in figure
6-2 and is interpreted physically as the proportion of values (arrows)
that lie in the region A¢ around £.

10— Rejected

>_ 8

V wp

c

L I 8¢
Zs

2G5 4

25

R

0 2 4 6 8 10
Radial position on target, £

FIGURE 6-2. — Probability density function of arrows on target.

To determine £ values, the simulation scheme can proceed as follows:
Choose two random numbers, R4 and Ry, from a large set of numbers
evenly distributed in the range 0to 1. (How these numbers are chosen in
a practical calculation is discussed in section 6.3.3.) The two random
numbers are then used to select a point (P(£), &) in figure 6—2 by setting
P(&)=R, and €= (&maz—Emin)Rs=10R. This value of P(£) is then
compared to the value of P(£) computed at ¢ from equation (6-3). If
the randomly selected value lies above the computed value of P(£),
then the randomly selected value of ¢ is rejected, and two new random
numbers are selected. Otherwise, the value of £ that has been found
is listed as the location that the arrow will strike. Referring again to
figure 62, it is seen that such a procedure assures that the correct
fraction of ¢ values selected for use will lie in each increment A£ after a
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large number of completely random selections of (P(£), €) is made.
The difficulty with such an event-choosing procedure is that in some
cases a large portion of the £ values may be rejected because they lie
above the P(&) curve. A more efficient method for choosing £ is therefore
desirable.
One such method is to integrate the probability density function
P(¢) using the general relation

£
R@O=[ Pena (69

where R(£) can take on values only in the range O to 1 because the
integral under the entire P(£) curve is unity according to equation (6—3).
Equation (6-4) is the general definition of the cumulative distribution
function. A plot of R against £ from equation (6—4) shows the probability
of an event occurring in the range — to £. For the method given here,
the function R is taken to be a random number; each value of £ is then
obtained by choosing an R value at random and using the functional
relation R(£) to determine the corresponding value of £. To show that
the probability density of £ formed in this way corresponds to the
required P(£), the probability density function of figure 6—2 can be used
as an illustrative example. Inserting the example P(§) of equation (6-3)
into equation (6-4) and noting that P(§) =0 for ~x < £ <0 give

— ¢ * b 63 - -5
R—J; P(£*)dé 1000 0sR=l : (6-5)

Equation (6-5) is shown plotted in figure 6-3.

Now it will be shown that choosing R at random and determining a
corresponding value of £ from equation (6-3) is equivalent to taking the
derivative of the cumulative distribution function and that this derivative
is, by examination of equations (6~5) and (6-3), simply P(£). Divide the
range of ¢ into a number of equal increments A§. Suppose that M values
of R are now chosen in the range 0 to 1 and that these M values are
chosen at equal intervals along R. There will be M values of § which
correspond to these M values of R. The fraction of the ¥ values of ¢
which occurs per given increment A£ is then Mae/M = AR which gives

Mae
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FIGURE 6-3. — Cumulative distribution of arrows on target.

The quantity AR/A{ approaches dR/df if a large enough value is used
for M and small increments A{ are examined. But dR/d¢ can be seen
from equations (6~5) and (6-3) to be simply P(§); therefore, by obtain-
ing values of £ as described preceding equation (6-5), the required
probability distribution is indeed generated.

Often physical problems arise in which the frequency distribution
depends on more than one variable. For example, if the archer discussed
previously suffered from astigmatism, then a dependence on circum-
ferential angle & might appear in the distribution of arrows on the target
in addition to the dependence on radius. If the interdependence of the
variables is such that the frequency distribution can be factored into a
product form, then the following can be written:

f€, 0)=g(£)R(0) (6~7)

and values of P(£) and P(8) can be found by integrating out each
variable in turn to give
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oma.r Dmu.r
f (€, 8)d8 £&) f £(6)d6

Omin min

Po= [ i e 0)dods [ prag [ Foras

min

=S

. (6-8)

[ reae

and similarly,
ema.r
f€, 0)dE

0

P(0)= a!m‘:’r-e’”i:mu = Bmaf:( ) (6—9)
f’min I‘min f(f' 0)d§d0 J'Omin f(o)do

The methods given previously in this section are used to evaluate
¢ and 6 independently of one another after choosing two random
numbers.

If A&, 6) cannot be placed in the form of equation (6-7) (i.e., if there
are no independent g(£) and h(6)), then it can be shown (refs. 2 and 7)
that £ and 8 values can be determined by choosing two random numbers

R and Rs. Note that

, 0
[} ste. o1dod

Amin

Then ¢ and 8 are found from the equations

om.t
Re=|" % P, 0) do dg” (6-10)
-= min
and
R9=J’o P(9*, £=fixed) d6* (6—-11)

where ¢ in equation (6—11) is that value obtained from equation (6—10).
This procedure may be extended to any number of variables. Equations
(6-10) and (6-11) define the marginal and conditional distributions of
P(&, ), respectively.
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6.3.3 Random Numbers

6.3.3.1 Definition of random numbers. —Formally, a random number
can be taken here as a number chosen without sequence from a large
set of numbers spaced st equivalued intervals in the range 0to 1. If the
numbers 0, 0.01, 0.02, 0.03, . . . 0.99, 1.00 are placed on slips of paper
and then the jumbled slips are placed in a hat, there would be fair as-
surance that, if a few numbers are picked, they will be random numbers.
If many choices are to be made, then perhaps smaller intervals (more
slips) should be used; after it is drawn, each slip should be replaced and
randomly mixed in the hat.

- For a typical computer problem, random numbers might be needed for
10° or more decisions. It is desirable that the numbers be obtained in
a rapid way and that the numbers chosen be truly random.

6332 How random numbers are generated.—On the modern digital
computer, it is impractical to fit a mechanical arm and an optical scanner
to choose and interpret slips pulled from a hat. To give truly random
numbers, one possibility would be to sample a truly random process.
Such phenomena as noise in an electronic circuit or radioactive decay
particle counts per unit time have been tried, but in the main they are
found to be too slow for direct computer linkage.

A second means is to obtain or generate tables of random numbers
(refs. 10 and 11) perhaps by one of the processes mentioned previously,
and then enter these tables in the computer memory. This allows rapid
access to random numbers, but for complex problems requiring a large
quantity of random numbers, the required storage space becomes pro-
hibitive. This method has been widely used, however, when a modest
problem is to be solved.

The most widely practiced method at present for obtaining random
numbers for a digital computer is a pseudorandom number generator.
This is simply a subroutine that exploits the apparent randomness of
groups of digits in large numbers. One simple example of such a routine
is to take an 8-digit number, squdre it, and then choose the middle 8
digits of the resulting 16-digit number as the required random number.
When a new random number is needed, the previous random number is
squared, and the new random numbers is taken as the middle 8 digits
of the result. This process is said by Schreider (ref. 7) to degenerate
after a few thousand cycles by propagating to an all-zero number.

A more satisfactory routine used at the Lewis Research Center of
NASA is based on suggestions in reference 12. Here a random number
is generated by taking the low order 36 bits of the product Ra-iK,
where K=51 and Ra-: is the previously computed random number.
The subroutine is started by taking Ro=1, or the programmer may

323-003 O-69—13
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give Ro an arbitrary value. By always starting a given program with
the same Ro. it is possible to check solutions through step-by-step
tracing of a few histories.

6333 How the numbers are made sufficiently random.—The fact
that such subroutines generate pseudorandom numbers immediately
raises a danger flag. How can it be established that such pseudorandom-
ness is sufficiently random for the problem being treated? Does the se-
quence repeat; if so, after how many numbers? Certain standard tests
exist that give partial answers to these questions, and a full discussion
of them is given in references 3, 12, and 13. None of these tests is
sufficient to establish randomness, although passage of them is neces-
sary. Kendall and Smith (ref. 13) describe four such tests. The names they
ascribe give the flavor of the methods: the frequency test, the serial test,
the poker test, and the gap test. These tests are described as . . . useful
and searching. They are, however, not sufficient. . ”

Perhaps the safest course to follow is to obtain a standard subroutine
whose properties have been established by such tests and use it only
within its proven limits. The applicability of a given pseudorandom
number generator can be checked to some extent by generating the
mean of some known distributions appearing in the problem at hand.
and comparing the results with analytically determined means.

6.3.4 Evaluation of Error

Because the solutions obtained by Monte Carlo are averages over the
results of a number of individual samples, they will, in general, contain
fluctuations about a mean value. As in any process of this type, the mean
can be more accurately determined by increasing the number of values
used in determining the mean. Although it is not possible to ascribe a
100-percent confidence in the value obtained, such confidence can be
approached as closely as desired if the budget for computer time can
stand the strain. More generally, some ad hoc rules of economy and an
estimate of desired accuracy to a given problem can be applied. and
solutions can be obtained by trading off within these limits.

To establish the accuracy of the solutions, one of the following tests
can be applied. For example, suppose it is desired to know the proba-
bility of the randomly staggering attendee of an engineering convention
(who was discussed in section 6.3.1) reaching a certain bar at the city
limits. To determine his success exactly, an infinite number of hypotheti-
cal engineers would have to be followed and the probability P(l, m) of
reaching the boundary point (/, m) would be determined as

3{i. m) m)]v_ (6-12)

P, m)=[ N
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where S(l, m)/N is the number of samples S(/, m) reaching the boundary
point divided by the total number of samples . Obviously, following an
infinite number of samples would not be economical, and a probability
would be computed based on some finite number of samples N, of order
perhaps 102 to 10%. Then an estimate is needed of the error u involved
in approximating infinity by these relatively small sample sizes.

For a sample size greater than about N=20, it is found (refs. 3 and 7),
from application of the “central limit theorem” and the relations govern-
ing normal probability distributions, that the following relation holds
whenever the samples S in question can be considered to leave a source
and either reach a scoring position with probability P or not reach it with
probability 1 —P. The probability that the average S(I, m)/N for finite N
differs by less than some value u from [S({, m)/N]v.» is given by

S (S _ 12 ("7 g
P~ <ul=g= ), expimnman
= erf (n/V2) (6-13)

n~p {[G)—(N—h%)]}m (6-14)

Compilations of the error function (erf) are given in many standard ref-
erence tables (refs. 14 and 15).

In many problems, such an error estimation procedure cannot be
applied because the samples do not originate from a single source. For
example, the radiative energy flux at a point on the boundary of an en-
closure may depend on the energy arriving from many sources. For
such situations, the most straightforward way of estimating the error in
a result (such as the error in radiative heat flux at a point) is to subdivide
the calculation of the desired statistical mean result into a group of [
submeans. The “central limit theorem” then applies. This theorem states
that the statistical fluctuations in the submeans are distributed in a
normal or Gaussian distribution about the overall mean. For such a dis-
tribution, a measure of the fluctuations in the means can be calculated.
This measure is called the variance. For example, if 200 samples are
examined, a mean result P is calculated on the basis of 200 samples,
and 20 submeans P, Py, . . . P; of 10 samples each are calculated.
Then the variance ¥* of the mean solution P is given by

(ZP)
‘y’=l—1'i[i(Pi—13)2]=ITll ﬁps-—"ﬂ,—‘— (6-15)

i=l i=1

where
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This variance is an estimate of the mean square deviation of the sample
mean P from the true mean, where the true mean would be obtained by
using an infinite number of samples. From the properties of the normal
frequency distribution, which the fluctuations in the results computed
by Monte Carlo will in general follow, it is shown in most texts on sta-
tistics that the probability of the sample mean P lying within =y of the
true mean is about 68 percent, of lying within =2y is about 95 percent,
and of lying within + 3y is 99.7 percent.

Another measure of the statistical fluctuations in the mean is v,
the standard deviation. Because v is given by the square root of equation
(6-15), it is evident that in order to reduce y by half, the number of
samples which are used in computing the results must be quadrupled
(thereby quadrupling [ for constant submean size). This probably means
quadrupling the computer time involved unless the term in brackets can
somehow be reduced by decreasing the variance (scatter) of the individual
submeans. Much time and ingenuity have been expended in attempts at
the latter, under such labels as “stratified sampling,” “splitting,” and
“importance sampling.” These and other variance-reducing tech-
niques are discussed in references 3 and 7. The savings in computer
time available from application of these techniques is abundant reward
for their study, and the reader who intends to use Monte Carlo for any
problem of significant complexity is urged to apply them.

6.4 APPLICATION TO THERMAL RADIATIVE TRANSFER
6.4.1 Introduction

As discussed in chapters 4 and 5, the formalation of radiation exchange
heat balances in enclosures leads to integral equations for the unknown
surface temperature or heat flux distributions. Integral equations
also result when considering radiation exchange within a radiating
medium such as a gas. These equations can be quite difficult to solve
and are a consequence of using a “macroscopic” viewpoint when de-
riving the heat flow quantities. By invoking a probabilistic model of
the radiative exchange process and applying Monte Carlo sampling
techniques, it is possible to utilize a ‘“semimacroscopic’ 3 approach
and avoid many of the difficulties inherent in the averaging processes
of the usual integral equation formulations. In this way, actions of small
parts of the total energy can be examined on an individual basis, rather
than attempting to solve simultaneously for the entire behavior of all
the energy involved. A microscopic type of model for the radiative ex-
change process will be examined; then the solution of two examples
will be outlined.

3Or, perhaps, “semimicroscopic.”
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6.42 Model of the Radiative Exchange Process

In engineering radiation calculations, the usual quantities of interest
are the local temperatures and energy fluxes. It seems reasonable to
model the radiative exchange process by following the progress of dis-
crete amounts (“bundles™) of energy since local energy flux is then
easily computed as the number of these energy “bundles” arriving per
unit area and time at some position. The obvious bundle to visualize is
the photon, but the photon has a disadvantage as a basis for a model;
its energy depends on its wavelength, which would introduce a needless
complication. Therefore, a model particle is devised that is more con-
venient. This is the *“photon bundle,” which is a bundle carrying a given
amount of energy w; it can be thought of as a group of photons bound
together. For spectral problems where the wavelength of the bundle is
specified, enough photons of that wavelength are grouped together to
make the energy of the bundle equal to w.

By assigning equal energies to all photon bundles, local energy flux
is computed by counting the number of bundles arriving at a position of
interest per unit time and per unit area and multiplying by the energy of
the bundle. The bundle paths and histories are computed by the Monte
Carlo method as will now be demonstrated by an example problem.

6.4.3 Sample Problem

For an example, look at a simple problem outlined in reference 16
and examine the energy radiated from element d4, at temperature T,
that is absorbed by an infinite plane A4: at temperature 7:=0 (see fig.
6—4). Let element d4, have emissivity

e, =€\, B, Th) (6-16)
let area 2 have emissivity

€, =€, 2(X, Bz, T2) 6-17)
and assume only that the emissivity of both surfaces is independent of

circumferential angle 6.
For surface element dA,, the total emitted energy per unit time is

dQ¢,1=61(T1)0'T1 dAl (6_18)

where € (T,) is the hemispherical total emissivity given in this case by

(eq. (3-6a) of Vol. I)
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j‘o J‘ ei. l(xi ﬁl» Tl)i,'\b, I(X, Tl) cos Bda)d}\
[=]

oT}

E[(Tl) = (6‘19)

where iy, (A, T) is the Planck spectral distribution of blackbody radiant
intensity at T\.

If it is assumed that dQ.,,, the total energy emitted per unit time
by dA,, is composed of N energy bundles emitted per unit time, then
the energy assigned to each bundle is

(6—20)

To determine the energy radiated from element dd, that is absorbed
by surface A, follow N bundles of energy after their emission from
dA, and determine the number S: absorbed at A.. If the energy re-
flected from A: back to d4; and then rereflected to 4: is neglected, the
energy transferred per unit time from dA, to 4. will be

T,)oT4dA
dQ1 ~absorded by 2 = wS2= i'-(—-l)—;—‘-—‘ S: (6-21)

The next question is how to determine the path direction and wave-
length that is assigned to each bundle. This must be done in such a
way that the directions and wavelengths of the N bundles conform to
the constraints given by the emissivity of the surface and the laws
governing radiative processes. For example, if wavelengths are as-
signed to N bundles, the spectral distribution of emitted energy generated
by the Monte Carlo process (comprised of the energy wN )\ AX for discrete
intervals AA) must closely approximate the spectrum of the actual
emitted energy (plotted as wex, iy, ,d\ against A). To assure this, the
methods of section 6.3.2 are applied.

The energy emitted by element d4; per unit time in the wavelength
interval dA about a wavelength X and in the angular interval dB, about

Bl is
d’Qie LA, B) =277"5;., A, B, Tl)i;b_ (A T\) cos BidA4, sin B, dBidA
(6-22)
The total energy emitted by d4, per unit time is given by equation (6—18).

The probability P(X, B1) dBd\ of emission in a wavelength interval
about A and in an angular interval around B is then the energy in dg8.dA

e o e — e o e e ————— . i e = kb
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(eq. (6—22)) divided by the total emitted energy (eq. (6—18))

PQse, 1 (A, Br)

P(\, Bi1)dBidA= 0.,

=27‘re§ﬁ (A, B1)iy, ((A) cos Bu sin By dpid\
elo'Tf

(6-23)

(The T, in the functional notation has been dropped for simplicity.)
It is assumed here for simplicity that the directional-spectral emissivity
is a product function of the variables, angle and wavelength, that is,

& (A, B1) =D (MN)D:(5)) (6-24)

This assumption is probably not valid for many real surfaces since, in
general, the angular distribution of emissivity depends on wavelength as
shown, for example, by figure 5-1 of Vol. I. For the assumed form in
equation (6-24), it follows that the emissivity dependence on either
variable may be found by integrating out the other variable (see eq.
(6-9)). Then the normalized probability of emission occurring in the
interval dA is

/2
P(\)dr=dx L P(x, B1)dB,

/2
217de €r. (X, Bi)iy,, (X) sin By cos BidBy
0

= woT (6-25a)

Substituting into equation (6—4) and noting that P(X)d\ is zero in the
range —© < A < 0 give

A (2
: 21rf f € (A%, B1)is,, 1 (A*) sin By cos B dpd\*
_ o _Jo

€10’T‘1‘

Ry
{6-25b)

where the asterisk denotes a dummy variable of integration. If the num-
ber of bundles N is very large and this equation is solved for A each time
a random R, value is chosen, the computing time becomes too large for
practical calculations. To circumvent this difficulty, equations like equa-
tion (6-25b) can be numerically integrated once over the range of \
values and a curve can be fitted to the result. A polynomial approximation
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A=A+ BR\+CR}+. .. (6—26)
is often adequate. Equation (6—26) rather than equation (6-25b) is used
in the problem-solving program.

Following a similar procedure for the variable cone angle of emission
B1 gives the relation

Ra=["" [ "P(aT Nirdgr

81 (=
2 fo L e 1N, BDiks, 1(N) sin BT cos BT dAdB!

€oT? ©-27)
which is curve fit to give
Bi=D+ERg +FR} +. . . (6-28)
If dA, is a diffuse-gray surface, equation (6-25b) reduces to
x 3
wf i, (A*)dN*
R\, dirusegray = 0 T =Fo_x 6—29)
oL,

where F,-, .is the fraction of blackbody emission in the wavelength
interval 0 to A. Equation (6—27) for this case reduces to

-3}
Rg,, diguse-gray =2 fo sin 8 cos Bf dBy =sin? B, (6—30a)

or

sin ﬁl =V RB,, diffuse-gray (6‘30b)

The point to be made here is that computational difficulty is not
greatly different in obtaining A from either equation (6—-26) or (6—29),
nor is it much different for obtaining B8 from either equation (6—28) or
(6-30b). The difference between the nondiffuse-nongray case and the
diffuse-gray case is mainly in the auxiliary numerical integrations of
equations (6—25b) and (6-27). These integrations are performed once
to obtain the curve fits; then as far as the main problem-solving program
is concerned, the more difficult case might just as well be handled. Thus,
increasing problem complexity leads to only gradual increases in the
complexity of the Monte Carlo program and similar gradual increases
in computer time.

For emission of an individual energy bundle from surface d4,, a wave-
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length A can be obtained from equation (6—26), and a cone angle of
emission B8; can be obtained from equation (6—28) by choosing two ran-
dom numbers R, and Rg,. To define the bundle path, there remains only
specification of the circumferential angle 8;. Because of the assumption
made earlier that emission does not depend on 6, it is shown by the
formalism outlined and is also fairly obvious from intuition that 6, can
be determined by

61=2mRs, (6-31)

where Ry, is again a random number chosen from the range between
0and 1.

Because the position of plane A, with respect to dd4, is known, it is a
simple matter to determine whether a given energy bundle will strike A,
after leaving d4, in direction (31, 6). (It will hit 4, whenever cos 6, =0
as shown in fig. 6-4.) If it misses A2, another bundle must be emitted

FIGURE 6~4. — Radiant interchange between two surfaces.

from dA,. If the bundle strikes A:, it must be determined whether it is
absorbed or reflected. To do this, the geometry is used to find the angle
of incidence B of the bundle on 4., that is,

cos B2=sin B, cos 6, (6-32)

Knowing the absorptivity of A; from Kirchhoff’s law
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a;\,z()\’ Bz)=€;\.2()\7 Bz) (6_33)

and having determined the wavelength X of the incident bundle from
equation (6—26) and the incident angle 8. from equation (6-32), the
probability of absorption of the bundle at A2 can be determined. The
probability of absorption is simply the absorptivity of 4. evaluated at
B: and A. This follows from the definition of directional-spectral ab-
sorptivity uj »(\, B2) as the fraction of energy incident on 4; in a given
wavelength interval and within a given solid angle that is absorbed by
the surtace. This is also a precise definition of the probability of ab-
sorption of an individual bundle. The absorptivity is therefore the
probability density function for the absorption of incident energy. It is
now easy to determine whether a given incident energy bundle is ab-
sorbed by comparing the surface absorptivity a;, .{A, B2) with a random
number R.,. If

Ra, < aj, 5(X, B2) (6-34)

the bundle of energy is absorbed and a counter S: in the computer
memory is increased by one to keep account of the absorbed bundles.
Otherwise, the bundle is assumed to be reflected and is not further
accounted for. If the bundle path were followed further, rereflections
from dA, would have to be considered. The neglect of rereflections is
reasonable if the absorptivity of 4. is large, or if the directional re-
flectivity is such that few bundles are reflected back along the direction
of incidence. If such reflections cannot be neglected, angles of reflection
must be chosen from known directional reflectivities, and the bundle
is followed further along its path until it is absorbed by A2 or lost from
the system. For the purposes of this example, little is to be gained by
following the bundle after reflection from surface 4, because the deriva-
tion of the necessary relations is similar to that already presented.

A new bundle is now chosen at d4,, and its history is followed. This
procedure is continued until N bundles have been emitted from dA,.
The energy absorbed at 4, is then calculated from equation (6—21).

The derivation of the equations needed for solution of the example
is now complete. In putting together a flow chart to aid in formulating
a computer program (fig. 6-5), some methods for shortening machine
computing time can be invoked. For example, the angle 6; is computed
frst. If the bundle is not going to strike 42 on the basis of the calculated
6., there is no point in computing A and B; for that bundle. Alternately,
because 8, values are isotropically distributed, it can be noted that
exactly half the bundles must strike 4,. Therefore, the calculated &
values can be constrained to the range —m/2 < 6 < 7/2.
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FIGURE 6-5. — Computer flow diagram for example radiant interchange problem.

The formulation of this problem for a Monte Carlo solution is now
complete. An astute observer will note that this example could be solved
without much trouble by standard integral methods. A more astute
observer might note further that extension to only slightly more difficult
problems would cause serious consequences for the standard treatments.
For example, consider introducing a third surface with directional
properties into the problem and accounting for all interactions.

6.4.4 Useful Functions

A number of useful relations for choosing angles of emission and
assigning a wavelength to bundles are given in the previous section.
These and other functions from the literature dealing with radiative
transfer are summarized in table 6-1.
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TABLE 6-]. — CONVENIENT FUNCTIONS RELATING RANDOM NUMBERS TO VARIABLES FOR
EMISSION (ASSUMING No DEPENDENCE ON CIRCUMFERENTIAL ANGLE 6)

Variable Type of Relation
emission
Cone angle 8 Diffuse sin §=R}*
R 8 .
Directional zf & (B*) sin B* cos g* dB*
gray Romnil
T
€
Directional T . . .
nongray R :21r fo J-o €.(8*, A)is(A) sin 8% cos B d\ dB
o eaT*
Circumferential Diffuse 0=2mR,
angle 0
Wavelength A Black or Fo_r=R\
gray
N A
|l eoomonar
Ry= g
A pw2
Nongray 2o 7 (8NN (A% sin g cos B dpre
irec- Ru= 0 Jo
tional T

EXAMPLE 6—1: A wedge is made up of two very long parallel sides of
equal width joined at an angle of 90°, as shown in figure 6—6. The surface
temperatures are T, =1000° K and T;=2000° K. The effects of the ends
may be neglected. Surface 1 is diffuse-gray with an emissivity of 0.5,
while the properties of surface 2 are directional-gray with directional-total
emissivity and absorptivity given by

€3(B2)= a3(B2)=0.5 cos B2 (6—35)

Assume for simplicity that surface 2 reflects diffusely. Set up a Monte
Carlo flow sheet for determining the energy to be added to each surface
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in order to maintain its temperature. Assume that the environment is

at T=0"K.
The energy flux emitted by surface 1 is

e, 1= €10'T:

If NV,-emitted sample energy bundles are to be followed per unit time and
area from surface 1, then the amount of energy per bundle will be

'4
w=%=%‘l (6-36)

The energy flux emitted from surface 2 is
k.
L]

/2
qe.z=2a'T;f €5(B) cos B sinB dB
w2 4
=oT} f cos? 8 sin3dB =‘%T3
0

If the same amount of energy w is assigned to each bundle emitted by
wall 2 as was used for wall 1, then

o4

wN 2 3

Substituting equation (6—36), the value of €, and the known surface
temperatures gives

_oTt Ni__32 6-37

Because each bundle has equal energy and 32/3 as many bundles are
emitted from surface 2 as from surface 1, it is obvious that surface 2
will make the major contribution to the energy transfer.

Now the distributions of directions for emitted bundles from the two
surfaces will be derived. Surface 1 emits diffusely, so that equation
(6-30b) applies. For surface 2, however, equation (6—27) must be used.
Substituting equation (6—35) into equation (6—27) gives, for the direc-
tional-gray case,

-
2miy, 5 f (0.5 cos B7) sin 87 cos By dBF
0

EzO‘T%

Rg,=
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The hemispherical total emissivity is substituted from equation (6—19)
to give

Ba
j cos? A7 sin B dB;
(]

Re,=

=1-—cos?f3,

/2
f cos? 3, sin By df3,
(1]

The fact that R and 1— R are both uniform random distributions in the
range 0 < R <1 can be used to write this as

cos B =R}?
Note that, by similar reasoning, equation (6—30b) can be written

cos Bi=R}?
Since there is no dependence on angle 8 for either surface, equation
(6—31) applies for both surfaces.

The distributions of directions at which bundle emission will occur has
now been determined. Next, the position on each surface from which

Surface 1

~Bundle path

B

FIGURE 6~6. — Geometry of example 6-1.

e e e e e A = s = e
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each bundle will be emitted must be determined. Because the wedge
sides are isothermal, the emission from a given side will be uniform. In
such a case, random positions x (fig. 6—6) on a given side could be picked
as points of emission. Such a procedure requires generation of a random
number. The computer time required to generate a random number can
be saved by noting that the bundle emission is the initial process in each
Monte Carlo history; hence, there is no prior history to be eliminated
by using a random number. In this case, x positions along L can be
sequentially chosen as

x=1%L

where n is the sample history index for the history being begun,
l1<sns<sN.

The point of emission and direction of emission for each bundle leaving
either surface can now be determined. The remaining calculations
involve determination of whether the emitted bundlés will strike the
adjacent wall or will leave the cavity. Examination of figure 6—6 shows
that, for either surface, when 7 < 8 < 27, the bundles will leave the
cavity for any 8, and when 0 < 8§ < , they will leave if

x
sin 6 _ 1

(o T T

The angle of incidence 8 on a surface is given in terms of the angles
Bs and 65 at which the bundle leaves the other surface by

sin 8 <

cos Bi=sin B sin 65

All the necessary relations are now at hand. Now a flow diagram is
constructed to combine these relations in the correct sequence. Dif-
fuse reflection is assumed from both surfaces. The resulting flow dia-
gram is shown in figure 6-7. Study of this figure will show one way
of constructing the flow of events for the problem at hand. The use of
the indices 8, 8, and 8" is an artifice to reduce the size of the chart.
The index & always refers to the wall from which the original emission
of the bundle occurred, and &' refers to the wall from which emission
or reflection is presently occurring. The index 8" is used to make the
emitted distribution of 8 angles correspond to either RY? or R}? and
have all the reflected bundles correspond to a diffuse distribution.
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6.4.5.Literature on Application to Radiation Exchange Between Surfaces

The standard or conventional methods for solving problems of radia-
tive transport between surfaces in the absence of absorbing media were
formulated in chapters 2 to 5. The standard methods have advantages
for certain types of problems and will outshine the Monte Carlo ap-
proach in speed and accuracy over some range of radiation calculations.
This range is outlined roughly by the complexity of the problem, and the
areas of usefulness of the Monte Carlo approach will now be discussed.

The chief usefulness of Monte Carlo to the thermal radiation analyst
lies in this fact: Monte Carlo program complexity increases roughly
in proportion to problem complexity for radiative interchange problems
while the difficulty of carrying out conventional solutions increases
roughly with the square of the complexity of the problem because of
the matrix form into which the conventional formulations fall. However,
because Monte Carlo is somewhat more difficult to apply to the simplest
problems, it is most effective in problems where complex geometries
and variable properties must be considered. In complex geometries,
Monte Carlo has the additional advantage that simple relations will
specify the path.of a given energy bundle, whereas most other methods
require explicit or implicit integrations over surface areas. Such inte-
grations become difficult when a variety of curved or skewed surfaces
are present.

6.4.5.1 Configuration factor computation.—The calculation of radia-
tive configuration factors by standard means usually involves certain
assumptions that place restrictions on the application of these factors
in exchange computations. The assumptions required when using
the ordinary configuration factors as derived in chapter 2 are that the
surfaces involved are diffuse-gray emitters and reflectors, that each
surface is isothermal, and that the total flux arriving at and leaving each
surface is evenly distributed across the surface. Any of these assump-
tions may be very poor; most surfaces are neither diffuse nor gray,
and the distribution of reflected flux usually deviates from uniformity to
some extent. Where deviations from the assumptions must be considered,
calculation of the configuration factors becomes difficult, and if geom-
etries with nonplanar surfaces are involved, Monte Carlo techniques may
become invaluable. It should be noted, however, that unless a parametric
study of the interchange of radiant energy within an enclosure with speci-
fied characteristics is being carried out, it may be easier to compute
directly the entire radiative flux distribution by Monte Carlo. This
would be simpler than computing configuration factors by Monte Carlo
and then using an auxiliary program to calculate energy exchange by
means of these factors.

As computed by Monte Carlo, configuration factors are identically
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equal to the fraction of the total energy bundles emitted from a surface
that is incident upon a second surface. No restrictions are made to
diffuse-gray surfaces with evenly distributed, emitted, and reflected
flux.

Corlett (ref. 17) has computed exchange factors (as distinguished
from configuration factors) for a variety of geometries, including louvers,
and circular and square ducts with various combinations of diffusely
and specularly reflecting interior surfaces and ends. These factors
give the fraction of energy emitted by a given surface that reaches
another surface by all paths, including intermediate reflections. One
set of results, the exchange factors between the black ends of a cylinder
with a diffusely reflecting internal surface, is shown in figure 6-8.

Weiner et al. (ref. 18) carried out the Monte Carlo evaluation of
some simple configuration factors for comparison with analytical solu-
tions. They then considered energy exchange within an enclosure with
five specularly reflecting sides, each side being assumed to have a
directional emissivity dependent upon cone angle of emission.

Total number of sample
bundies per unit time,
N

500 ~—f— 5000

: 2'- I‘—L——..ilfz
(VYY) /
5 I~
g 1 3 diffuse)
2 08
2 whk
5 -
ad
M €
) < ‘-2
: Monte Cario
@ a .2
. A 0
Integral equation
ol Lo |
Ll 2 3.4 6 81 2 3 4 6 8 10

Length-to-diameter ratio, L/D

FIGURE 6-8.— Radiation exchange factors between black ends of diffuse walled cylinder
(from ref. 17). ei=er=1.
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They also worked out the case of interchange within a simulated
optical system. This system is constructed of a combination of spherical
and conical surfaces that enclose a cylindrical specular reflector with
two surfaces. This is obviously an interchange problem to cause many
unhappy hours of analyzing integral limits in the usual formulations.

6.4.5.2 Cavity properties.— At least one Monte Carlo solution exists
in the literature for a surface interaction with a distant source. This
is the case of a conical cavity with diffusely reflecting inner surface.
Polgar and Howell (ref. 19) analyzed the bidirectional reflectivity of
the cavity when exposed to a beam of parallel incident radiation and
also determined the directional emissivity of the cavity. Parameters
varied were the angle of incidence, cone angle, and emissivity of the
inner surface of the cone. One set of representative results is shown in
figure 6-9. No results were found in the literature for direct comparison
of the computed directional properties; however, the hemispherical
absorptivity results were obtained by integrating the directional values
and were compared in reference 20 to analytical results from reference
21. The comparison is shown in figure 6-10.

The bidirectional reflectivity results computed by Monte Carlo in
reference 19 illustrate the scatter of the computed points that depends
on the number of energy bundles reflected from the cone interior through
any given area element on a unit hemisphere imagined over the conical

L0
O  Monte Carlo (ref. 20}

8 Analytical (ref. 21)
a -
=
EN Y
? Cone angle
§ ~ of cavity,

deg
3 4
5
Wy
2
L

0 .2 .4 .6 .8 1.0
. Apparent hemispherical absorptivity

FIGURE 6-10, — Comparison of Monte Carlo results for absorptivity of conical cavities
(ref. 20) with analytical results (ref. 21).
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Angte of reflection in
plane of incidence,

Direction
of incident
radiation

.4 3 .2 .1 0 .1 .2 3 4
Bidirectional reflectivity, p"

FIGURE 6-11. —Expected standard deviation of results for bidirectional reflectivity of
diffuse conical cavity. Cone angle of cavity, 30°; angle of incidence of radiation, 60°
(from ref. 19).

cavity. The scatter is shown in figure 611, which gives the standard
deviation of the computed reflectivity at various angles of reflection.
The solid angle subtended to the base by area elements of equal angular
increment ABA® on the hemisphere varies with the sine of the angle
of reflection, so the number of sample energy bundles per unit solid
angle duo=sin 8 dBdO near the cone axis becomes very small. This
leads to larger scatter at angles near the cone axis, where sin 8§ — 0.
6453 Extension to directional and spectral surfaces.—Few refer-
ences exist that treat problems involving both directionally and spectrally
dependent properties. The reasons for this omission seem twofold.
First, accurate and complete directional-spectral properties, especially
the former, are not often found in the literature. An analyst desiring to
include such effects might thus be unable to find the requisite data for his
system. Second, when solutions are attained to such problems, they are
often so specialized that little interest exists to warrant their wide dis-
semination in the open literature. As pointed out by Dunn et al. (ref. 22),
when the radiative properties become available, the methods for han-
dling such surface radiative energy exchange problems now exist, and
Monte Carlo appears to be one of the better-suited techniques.
Toor, Viskanta, and Schornhorst (refs. 23 to 26) have successfully
applied Monte Carlo techniques to some interchange problems involving
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surfaces with directional and spectral property variations. Some of these
results were discussed in chapter 5.

6.4.6 Statistical Difficulties of Monte Carlo Technique

Monte Carlo calculations give results that fluctuate around the *‘real”
answer because the method is a repetitive experiment using a mathe-
matical model in place of the actual physical situation. The uncertainty
can be found by applying standard statistical tests; the uncertainty can
be reduced in the same manner as experimental error, that is, by averag-
ing over more tests (bundle histories), and/or by reducing the variance
of individual tests.

No rigorous criteria exist to guarantee the convergence of Monte
Carlo results to valid solutions; however, convergence has not as yet
been a difficulty in thermal radiation problems. It would often be im-
mediately evident that convergence to invalid solutions was occurring
because of the limiting solutions and physical constraints that are
known for most radiative problems.

Most of the difficulties that do arise in Monte Carlo sampling tech-
niques are concerned with obtaining an optimum sample size. Such
difficulties have been sufficiently common in transport processes that
are mathematically related to radiative transport so that special methods
of “weighting” the free paths of bundles have been developed to obtain
adequate samples. Using these methods saves computer time and in-
creases accuracy; these gains, however, are at the expense of added
complexity.

6.4.7 Closing Remarks

In this chapter, Monte Carlo has been discussed as a method suitable
for the solution of complex radiative exchange problems. Two sample
problems were outlined to demonstrate its application, and some of the
advantages and disadvantages of the technique were discussed along
with pertinent literature references.

From this, certain conclusions emerge. First, Monte Carlo appears
to have a definite advantage over other radiative exchange calculation
techniques when the difficulty of the problem being treated lies above
some undefined level. This level usually cannot be defined since it
depends not only on the specific problem but is probably a function of
the experience, competence, and prejudice of the individual working
the problem. However, problems with complexity above this nebulous
benchmark can be treated by Monte Carlo with great flexibility, sim-
plicity, and speed. The Monte Carlo approach does lack a kind of gen-
erality common to other approaches in that each problem may require
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an individual technique, and a dash of ingenuity often helps. This
places a greater burden on the programmer’s backlog of experience and
intuition whereas standard methods may allow programing through
“cookbook” application of their formalism if they can be applied at all.

Second, for the thermal-radiation problems carried out to date,
the parameters and mathematical relations involved usually lie in ranges
which allow straightforward Monte Carlo programing without the need
of the more exotic schemes occasionally necessary in other Monte
Carlo transport studies.

Third, with all its advantages, the method suffers from certain dif-
ficulties. The worst of these are the statistical nature of the results and
the lack of guaranteed statistical convergence to the true mean value.
It should be noted that the latter fault is common to many methods when
complex problems are being treated because rigorous mathematical
criteria to guarantee convergence to a solution are available only in
certain cases.

Finally, it must be commented that the person using Monte Carlo
techniques often develops a physical grasp of the problems encountered
because the model being utilized is simple, and the mathematics de-
scribing it are therefore on a less sophisticated basis. This is in contrast
to the rather poor physical interpretations and predictions which can
be made when working with, say, a matrix of integral equations.
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Chapter 7. Radiation in the Presence of Other
Modes of Energy Transfer

7.1 INTRODUCTION

In the preceding chapters, radiation exchange was the only mode of
heat transfer considered to be present. In many practical systems,
however, a significant amount of heat conduction and/or convection
may be occurring simultaneously, and the combined effect of all the
heat transfer modes must be accounted for. The interaction of heat
transfer modes may be simple in some cases; for example, the heat
dissipation by radiation and convection may be essentially independent
and hence can be computed separately and then added. In other in-
stances, the interaction can be quite complex.

The following are some examples of situations having combined heat
transfer effects. For a vapor cycle powerplant operating in outer space,
the waste heat is rejected by radiation. In the space radiator, as shown
in figure 7-1(a), the vapor used as the working fluid in a thermodynamic
cycle is condensed, thereby releasing its latent heat. The heat is then
conducted through the condenser wall and into fins that radiate the
energy into space. The temperature distribution in the fins and the fin
efficiency depends on the combined radiation and conduction processes.

In one type of steel strip cooler in a steel mill, figure 7-1(b), a sheet
of hot metal moves past a bank of cold tubes and loses heat to them by
radiation. At the same time, cooling gas is blown over the sheet. A com-
bined radiation and convection analysis must be performed to determine
the temperature distribution along the steel strip moving through the
cooler.

In a nuclear rocket engine such as illustrated by figure 7-1(c), hydrogen
gas is heated by flowing through a high-temperature nuclear reactor
core. The hot gas then passes out through the rocket nozzle. The interior
surface of the rocket nozzle receives heat by radiation from the exit
face of the reactor core and by convection from the flowing propellant
stream. Both these energy quantities are conducted through the nozzle
wall and removed by a flowing stream of coolant.

The examples cited all involve the transfer of heat by two or more
heat transfer modes. Heat may flow first by one mode and then by a
second, as is the case of conduction through a plate followed by radiation
from the surface, and the modes are considered to be in series. Heat
flow may also occur by parallel modes, such as by simultaneous conduc-

213
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FIGURE 7-1.~Heat transfer devices involving combined radiation, conduction, and
convection.

tion and radiation through a transparent medium. The modes can thus
be acting in series, parallel, or both.

In this chapter, combined radiation, conduction, and convection
problems will be examined subject to an important restriction: The
medium through which the radiation is passing does not absorb or emit
radiation; that is, it is completely transparent. This restriction will be
removed in the third volume of this series which deals with media that
absorb, emit, and scatter radiation.

The various heat transfer modes depend on temperature to different
powers. When radiation exchange between black surfaces is considered,
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the energy fluxes depend upon surface temperatures to the fourth power.
For nonblack surfaces, the exponent on the temperature may be some-
what different from 4 because of the variation of emissivity with tempera-
ture. If conduction is present, the Fourier conduction law prescribes a
dependence of heat flow upon local temperature gradient, thus introduc-
ing derivatives of the first power of the temperature (when the thermal
conductivity does not depend on temperature). If convection enters the
problem, it provides a heat flow that depends approximately on a dif-
ference of the first powers of the temperatures, the exact power depend-
ing on the type of flow; for example, free convection depends on tempera-
ture difference between the 1.25 and 1.4 power. Physical properties
that vary with temperature will introduce additional temperature
dependencies. The fact that such a wide variation in powers of tempera-
ture are involved in the energy transfer process means that the governing
equations are highly nonlinear.

Because the radiation terms are usually in the form of integrals that
give the amount of radiative energy from the surroundings, and the con-
duction terms involve derivatives, the energy balance equations are in
the form of nonlinear integrodifferential equations. Such equations are
not easily solved using presently available mathematical techniques.
Except in the simplest cases, it is usually necessary to resort to numerical
evaluation of the solutions. Each problem requires its own most efficient
method of attack, and for this reason, no general discussion of numerical
or other mathematical solution techniques will be given here. For
such techniques, the reader is referred to the extensive mathematical
literature on numerical methods and the representative radiation papers
referenced throughout this chapter. This chapter will concentrate on the
methods of setting up the energy balance equations and gaining insight
into the physical problems, leaving the actual solution methods to the
mathematical texts except where specialized approaches are of value.

7.2 SYMBOLS
A area
a spacing between fins; coefficients in matrix
B parameter in example 74
b thickness of conducting medium; fin thickness; tube wall thick-
ness
c correction factors
Cp specific heat
D tube diameter
F configuration factor
f coefficients in eq. (7-12)
G parameter in eq. (7-30)
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parameter defined in example 7-5

heat transfer coefficient

thermal conductivity

length of tube

dimensionless tube length, L/D

parameter in eq. (7-30)

parameter defined in connection with eq. (7-25)
Nusselt number, AD/k

normal direction

perimeter

Prandtl number, c,u//k

energy rate; energy per unit time

energy flux; energy per unit area per unit time
dimensionless radius of example 7-3

Reynolds number, Dumpsd pus

radius

parameter defined in example 7-5

absolute temperature

dimensionless temperature

mean fluid velocity

width of fin in example 74

distance from tube entrance to ring element
Cartesian coordinate positions

dimensionless parameters of example 7-3
emissivity

fin efficiency, defined in example 7-3
dimensionless temperatures in examples 7-3 and 7-4
dimensionless parameter defined in example 7-4
fluid viscosity

distance from tube entrance

distance from fin base

density of fluid

density of solid material

Stefan-Boltzmann constant

time

Subscripts:

L

base surface between fins
evaluated at base of fin
conduction

environment

fin or fluid
gas
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in or inner

out or outer

radiation

reservoir

wall

at position x

at position &

evaluated at surfaces 1, 2 or at inlet and exit ends of tube

g Y wo ~

=R
[ ]

7.3 PROBLEMS INVOLVING COMBINED RADIATION AND CONDUCTION

Physical situations that involve only conduction and radiation are
fairly common. Some examples are heat losses through the walls of a
vacuum Dewar, heat transfer through “superinsulation” made up of
separated layers of highly reflective material, and heat losses and
temperature distributions in satellite and spacecraft structures.

The sophistication of the radiative portion of the analysis can range
from assuming finite black surfaces and using diffuse configuration
factors to a complete treatment of local directional-spectral effects via
a Monte Carlo or integral equation approach. The choice of radiative
formulation depends on the accuracy required, and the relative impor-
tance con the quantities desired of the radiative mode in relation to the
heat conduction. If conduction dominates, then fairly rough approxima-
tions can be invoked in the radiative portion of the analysis, and vice
versa. Some simple examples of situations involving radiation and
conduction are now examined, and progress is then made to more
sophisticated treatments.

7.3.1 Uncoupled Problems

The simplest situation exists when the radiation and conduction
contributions to an unknown quantity, say heat flux, are independent;
the contributions are then computed separately and the individual
results added. The heat transfer modes are said to be uncoupled with
regard to the desired quantity.

EXAMPLE 7-1: As an example of an uncoupled situation, consider
two black infinite parallel plates separated by a medium of thickness &
that has thermal conductivity k and is transparent to thermal radiation.
If one plate is at temperature T; and the other is at temperature T,
what is the net energy exchange between the plates?

The net energy transferred is composed of Qx, the net radiative
exchange, and Q., the transfer by conduction. The net energy transferred
is also equal to the energy Q; that must be added to plate 1 to maintain
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it at its specified temperature,
o= QR + Q-

The energy transfer per unit time and area by radiation between two
infinite parallel black plates is simply

-QA—"-= o(T{—T})
and that by conduction is

%E= . (T —T,)

o |~

The total energy transfer per unit time and area is then the sum of
the separate contributions or

, k
Qe (Ti~Ty +5 (- To)

Example 7-1 demonstrates a situation where the conductive and
radiative components are uncoupled from one another; that is, the
presence of one parallel heat transfer mode does not affect the other
with regard to the computations of Q/4. The Q/A for each mode is com-
puted independently and they are then added. The radiative transfer
would have been the same in the presence of conduction and vice versa.
In such problems, all the methods of radiative computation developed
heretofore can be applied without modification, since the radiation is
computed independently.

7.3.2 Coupled Nonlinear Problems

Unhappily, the uncoupled problems described in the previous section
are not as common as coupled problems. In coupled problems the
desired unknown quantity cannot be found by adding separate radiation
and conduction solutions; the governing energy equation must be solved
with the two modes simultaneously included. In some situations, it is
possible to assume that the modes are uncoupled because of the weak
coupling that occurs. This assumption, when valid, allows escape from
some of the difficulties that will become manifest in succeeding sections
of this chapter.



ENERGY TRANSFER BY COMBINED MODES 219

EXAMPLE 7-2: As a simple example of a coupled problem, consider
from another viewpoint the situation in the previous example; that is,
two black infinite parallel plates that are separated by a transparent
medium of thickness b having thermal conductivity k. Plate 2 is at
temperature 7., and a known amount of energy Q./4 is added per unit
area to plate 1 and removed at plate 2. What is the temperature T,
of plate 1?7

This is the same situation as example 7-1, except that Q, is now
known and T is to be found. The same energy equation applies as in
example 7-1 and is rewritten to place the unknown on the left

0'7"‘,‘-§-£T.=¢7Tg+£Tg-i-Q
b b 1
The problem is coupled with regard to the desired unknown T, in that
T, must be found from an equation that simultaneously incorporates
both heat transfer processes. The equation for 7, is nonlinear and can
be solved iteratively.

These first two examples demonstrate that the types of boundary
conditions that are specified govern the possibility of uncoupling the
radiative and conductive calculations. When all temperatures are speci-
fied, the determination of the heat fluxes can usually be uncoupled.
If energy fluxes are specified, however, the entire problem must be
treated simultaneously because of nonlinear coupling governing the
unknown temperatures. The treatment can become more difficult if
variations of physical properties as functions of temperature must be
included.

In devices that operate in outer space, a means for dissipating energy
is to employ radiating fins. The energy is conducted into the fin and
radiated away from the fin surface. The determination of the unknown
temperature distribution within the fin requires a coupled solution. The
next example will deal with an analysis of the performance of a single
circular fin.

EXAMPLE 7-3: A thin annular fin in a vacuum is embedded in insula-
tion so that it is insulated on one face and around its outside edge as
shown in figure 7-2(a). The disk is of thickness b, inner radius r;, outer
radius r,, and thermal conductivity k. Energy is being supplied to the
inner edge, for instance, from a solid rod of radius r; that fits the central
hole, and this maintains the inner edge at T.. The exposed annular
surface, which is diffuse-gray with emissivity €, radiates to the environ-
ment, which is at temperature T.= 0. Find the temperature distribution
as a function of radial position along the annular disk.

Assume that the disk is thin enough so that the local temperature can

323-003 O-69—15
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~Insulation

2 4

(a)

(a) Disk geometry. (b) Portion of ring ele-
ment on annular
disk.
FIGURE 7-2. — Geometry for finding temperature distribution in thin radiating annular plate
insulated on one side and around outside edge.

be taken as constant across the thickness ; then for any ring element of
width dr as shown in figure 7-2(b), an energy balance can be made of
the form

A=B+C

In this equation, 4 and C are the conduction entering and leaving the
element, and B is the radiation from the element; thus,

- ar
A=—Kk27nrb ar

B=eoT*2nr dr

- ar  d/(_ ar
=—k27mrb dr+ dr( k27rrb‘3$)dr

If € and k are constant, then the energy balance becomes
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d({ d
kb p (rz; —eraT4=0 (-1

This equation is to be solved for the temperature distribution T'(r)
subject to the two boundary conditions: at the inner edge,

T= T.' atr=r;
and, at the insulated outer edge where there is no heat flow,

dr

o) =
dr atr=rp

By using the dimensionless variable 8 =T/T; and R= (r—ri)/(ro—ri),
the energy equation becomes

dzo 1 dO (ro—ri)*ecT} ..
dR2+R+ dR kb 9+=0

Fo—T;

Using the two parameters 8=r,/r; and y= (r,—r;)? €T3 kb results in
the energy equation taking the form

de 1 de _
-JE;-F-—T‘d—R-—‘ye‘—O (7-2)

8—1
with the following boundary conditions:
6=1 atR=0
and

90 _ _
6R—0 at R=1

Equation (7-2) is a second-order differential equation which is non-
linear because it contains O raised to two different powers. The tempera-
ture distribution depends only on the two parameters 8 and y. A solution
can be obtained by numerical methods.

A quantity of interest in the utilization of cooling fins is the fin ef-
ficiency 7). This is defined as the energy actually radiated away by the fin
divided by the energy that would be radiated if the entire fin were at

323-003 O-69—16
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the temperature Ti. The fin efficiency for the circular fin being studied
here is then

ro 1
21reo-f T4 dr 2[ [R6—1)+1]O0* dR
ri - 0

n= wir:—riecT? 5+1

This integral may be carried out after © has been determined from the
differential equation. The fin efficiency for this type of annular fin has
been obtained by Chambers and Somers (ref. 1) and is shown in figure 7-3.

Lo

Fin efficiency, 3

FIGURE 7-3. — Radiation fin efficiency for fin of example 7-3.

Because of the interest in radiator design for application in space
power systems, many conducting-radiating systems have been analyzed.
Typical are references 1 to 8 listed at the end of this chapter; many other
references are to be found in the literature.

For a transient situation where the temperature of the radiating fin
is changing with time, a heat storage term must be included in the energy
balance. For the ring element in example 7-3 this term is :

aT
pmcpb27mr dr -

With this term included, the energy balance equation (eq. (7-1)) be-
comes a partial differential equation in which temperature is a function
of radius and time

(9 oT
kb 137('75 —eraT*—pmc,,; (7-3)
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Results for the transient behavior of a radiating fin are given in ref-
erence 4.

For a thin radiating fin, the temperature within the fin was assumed
uniform across the fin thickness, and hence the temperature variation
was only in a direction parallel to the radiating surface. If the solid is
thick, however, the temperature will vary also with distance normal to
the radiating surface. The radiation acts as a boundary condition for the
solid conduction problem; thus, locally at the surface of a solid that is
emitting but not receiving radiation, the boundary condition is

aT
—k n =¢eg T4 (7—4a)

where n is the outward normal from the surface. More generally, when
the surface is both receiving and losing radiant energy,

oT _
—k%—Qa—ql (7‘4b)

Time-dependent temperature distributions within solids having surface
radiation were investigated in reference 8. The transient heat conduction
equation was solved with the boundary conditions of equations (7-4).

Example 7-3 considered only a single radiating fin. One additional
complication that must usually be considered is the mutual interaction of
radiation among the fins on a multifinned surface. This will introduce
integral terms into the equations as will be evident from the next example.

EXAMPLE 7-4: An infinite array of thin fins of thickness b, width ¥,
and infinite length are attached to a black base that is held at a constant
temperature T, as pictured in figure 7-4. The fin surface radiates in a
diffuse-gray manner, and the fins are in vacuum. Set up the equation
necessary for describing the local fin temperature, assuming the environ-
ment to be at T,=0.

Because the fins are thin, it will be assumed that the local temperature
of the fin is constant across the thickness b. An energy balance will
now be derived for the circled differential element of one fin chown in
the inset of figure 7-4. Since there is an infinite row of fins, the surround-
ing environment is identical for each fin and is the same on both sides of
each fin. Hence, from symmetry, only half the fin thickness need be con-
sidered. Also, the problem is simplified because the temperature distribu-
tion T(¢) of the adjacent fin is the same as T'(x). Thus, the energy balance
need be considered for only one fin. The conduction terms for the energy
into and out of the element dx per unit time and per unit length of fin
in the z-direction are
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FIGURE 7-4. — Geometry for determination of local temperatures on parallel fins.

=— é__sz
Qe.ilx) =—k5—
_ . _ bdl, d (_ éde)
QC.o(x)‘Qc.l+d0c,n— k2 ] +—l< k2 / dx

The radiation terms are formulated by using Poljak’s net radiation
method ' from section 3.4.1. The incoming radiation to the element
originates from the adjacent fin and from the base surface,

v . ,
QR.i(x)dx=L . qr, o(€)dF ag—qzd€ + ac Ty dF a-dz,

=dewo qr,o(E)dF ar-ge + dxaTiF 4z -a (7-5)

The outgoing radiation is composed of emission plus reflected incident
radiation

gr.o(x)dx=e€oT}(x)dx+ (1 —€)qr, i(x)dx (1-6)

The energy balance on the element is composed of the conduction and
radiation quantities
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gr,o dx+ Q¢ o(x) =gqn, dx+Q,, i(x)

By substituting the conduction terms and assuming constant thermal
conductivity, the energy balance becomes

an. (x)dx=gu, o(x)dx — k5 TLE 4y (-7

Equation (7-7) along with equations (7-5) and (7-6) for gr.i(x) and
gr.o(x) give three equations in the unknowns g,i(x), gr.o(x), and
Tr(x). (Note that gg,o(£)=gr,o(x).) Eliminating the two energy rates
gx.: and gk, » from the three equations results in

i FO(X)=Fu-s

+ zl-o[—p.(l—- )dfz(f)+e4(2)]dm z (18

where ©(X)=T(x)/Ts, B=alW, un=kbl2eaT;W?, X=x/W, and
Z=¢|W.

Equation (7-8) is a nonlinear integrodifferential equation and can be
solved numerically. Since it is a second-order equation, two boundary
conditions are needed. At the base of the fin T;{(x=0)=T, so that

o=1 atX=0 (7-9a)

A second condition is obtained at the outer edge of the fin x=W#. The
conduction to this boundary must equal the heat radiated

—kﬂ =eaTH(W)

ax Ir=W

or in terms of O

dO eoT} 16 _
O¢= % o0+ atX=1 (7-9b)

X &k

and it is evident that the fin thickness to width ratio /% now enters

. the problem as a new parameter. If (5/W)/2u is very small, then dO/dX

can be taken as zero.

The configuration factors in equation (7-8) are found by the methods
of examples 2-4 and 2-6 (for =90° in those equations), which give
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F =l[1___x__]_l{1___x__]
w2 Vaz+zx2) 2 V B2+ X?

dF at-az =~ a’ de=1 B
-2 Tz 4 (£ —x)2]32 2B+ (Z—X)2]*2

dZ

Solutions to other fin problems involving mutual interactions are found
in references 9 to 18.

The examples given in this section are simplified in that no property
variations have been included. When properties are variable, the basic
concepts are the same as demonstrated by the examples, although the
inclusion of property variations does add some complexity to the func-
tional form of the equations. The usual warnings concerning the inade-
quacy, in some cases, of the diffuse-gray assumptions carry over to
multimode problems.

When finite difference techniques are used in the solution of combined
conduction-radiation problems, the energy equation. is replaced by a
set of simultaneous nonlinear algebraic equations. When the physical
properties are constant, the conduction terms will contain temperatures
to the first power while the radiation terms will have temperatures to
the fourth power. To solve a set of nonlineat equations of this type, Ness
(ref. 19) has presented a rapid convergence iteration method for the
digital computer based on the Newton-Raplison technique. Assume that
the set of finite difference equations for the radiation conduction problem
has the form

(aut,+a;,t‘,‘)+(a|2tg+a;2t.})+- . -+(a|,.t,.+a;nt;)—bl=0

.

(aut|.+ai’,tf)+- . -+(ai,~t,-+a,-'jt;‘)+' ‘ '+(a;,.ln+a,-',,t;,‘)—bi=0 (7‘10)

(amtr +aln )+ o Flanttayt)) T 0t (anntn T apt}) —ba=0

The jth temperature is ¢; and the coefficients for the linear and non-
linear contributions of this temperature are a;; and a;;. respectively.

In the Newton-Raphson procedure, an approximate value for each
temperature is assumed. Let ¢j, be this approximation for the jth tem-
perature. Then a correction factor ¢; will be computed so that ¢;=t;jo +¢;.
This corrected temperature is used to compute a new ¢;, and the process
is continued until the ¢; becomes smaller than a specified value. The
c; are found from the following set of linear equations:



ENERGY TRANSFER BY COMBINED MODES 227

f||C|+f12(.‘;z+' . -+f|,.c,.+f|=0
fucr++ ¢+ fici+ -+ A+ fincn+fi=0 (7-11)

fnlCl +fn2C2+' : '+f;mcn+fn=0

The coefficients f; are given by

fi=Y (aito+ayth) —bi

Jj=1

(7-12)

and the fij are
fij=aij+dat, (7-13)

7.4 RADIATION AND CONVECTION

The treatment of problems involving combined heat transfer by con-
vection and radiation is quite similar to that for conduction-radiation
problems. The temperature differences that govern convection will
appear in place of the derivatives governing conduction; otherwise, the
governing energy equations remain of the same nature (i.e., nonlinear
and often almost intractable).

Radiation-convection interaction problems are found in consideration
of convection cells and their effect on radiation from stars, furnace
design where heat transfer from surfaces occurs by parallel radiation
and convection, the effect of incident solar radiation interacting with the
Earth’s surface to produce complex free convection patterns and thus
complicate the art of weather forecasting, and marine environment
studies for predicting free convection patterns in oceans and lakes.
Representative solutions are found in references 20 to 23. To illustrate
the concepts involved in an engineering problem, an example will now
be considered that involves gas flow through a heated tube.

EXAMPLE 7-5: A transparent gas enters a black circular tube of
geometry shown in figure 7-5. The wall of the tube is thin, and the outer
surface of the tube is perfectly insulated. The tube wall is heated elec-
trically to provide a uniform input of energy per unit area per unit time.
The variation of local wall temperature along the tube length is to be
determined. The convective heat transfer coefficient  between the gas
and the inside of the tube is assumed constant. The gas has a mean
velocity um, heat capacity c,, and density py.
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Fluid at

g2

Fluid at
Tg,1

Tr, 1 t

FIGURE 7-5.—Flow through tube with uniform internal energy input to wall and outer
surface insulated.

r 1 Uniform energy input to
t insulated tube wall

If radiation were not considered, the local heat addition to the gas
would be equal to the local electrical heating (since the outside of the tube
is insulated) and hence would be invariant with axial position X alongthe
tube. As a consequence, both the gas temperature and wall temperature
would rise linearly with X. On the other hand, if convection were not
considered, the only means for heat removal would be by radiation out
the ends of the tube as discussed in example 3-8. In this instance, for
equal environment temperatures at both ends of the tube, the wall
temperature has a maximum at the center of the tube and decreases
continuously toward both ends. The solution of the combined radiation-
convection problem is expected to exhibit partially both of the trends of
the limiting solutions.

Consider an energy balance on a ring area element of length dX on
the interior of the tube wall at position X as in figure 7-5. The energy
supplied to the ring per unit time is

L
qumD dX+fa oT4(E)dFaz-ax(|= —X|) 7D d=
=0
wD?
4

2
+oTt , T dF_ax(X) + 0T}, f’%sz_dx(L—X)

The terms are, respectively, the energy supplied by electrical heating
of the tube wall, the energy radiated to d4x by other wall elements of
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the tube interior (see section 3.4.1.3), and the energy radiated to ddx
from the inlet and the exit reservoirs. The reservoirs are assumed to
act as black disks at the inlet and outlet reservoir temperatures which
would have to be specified. Usually, the reservoirs are assumed to be at
the inlet and outlet gas temperatures. The energy transferred away from
the ring element at X by convection and radiation is

haDdX [TWX)—T,(X)]+ T} X)mwD dX

If axial heat conduction in the tube wall is neglected, the energy sup-
plied to the ring element must equal that transferred away, and the
energy quantities are equated to yield the following expression (rec-
iprocity has been used on the F factors so that dX could be divided out
of the equation):

L
ATul) = T, 01+ 0 T4 ()= gu+ [ oT3(2) dFax-ax(lX ~ Z)

+ 0Tt \Fax1(X)+ 0T} ;Fax-oL —X) (7-14)
This equation has two unknowns Tw(X) and Ty(X); hence, a second
equation must be found before a solution can be obtained. This is done
by forming an energy balance on the volume within the tube occupying

the length dX. The energy that enters this volume by being carried by
the flowing gas is

D2
Qi, y=umpscpTy(X) ﬂT

An additional amount of energy is added to the volume by convection
from the wall, namely,

dQi, g=wDh [Tu(X)— T,(X)] dX

Energy leaves by being carried out by the flowing gas

D? dT,X
Qo.n=umpf’~'pﬂT[ T,(X)+——L—d}(( )dX]

Equating the outgoing to the incoming energies gives the energy balance

umpye 3 L) (T~ T (1-15)
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By defining the dimensionless quantities

- 4h — 4Nu

umpcp, RePr
H=£(Q_w)”4
qu\ O/.

o 1/4
t= T( w)
and x=X/D, §=E/D, |=L|D, the energy balances on the wall and
fiuid elements can be written, respectively, as

04 (x) + H{tw(x) —to(x) ] =1+ f " 14(6) dFar-aelx=8)

+J’l t“,(f)dFd,_dg(f—x) +t‘,‘.’ le;,-_;(x) +t:. ng_;-_g([ —Xx) (7—'16)

izﬁx('f)'=s[‘w(x) —ty(x)] (7-17)

giving two equations involving the unknowns t,(x) and ¢,(x), and having

Coupled solution

— - Pyre radiation
o= = — Pyre convection
2.90}+ _
[ "
2. 75{N§e change of scale
221 =
7\,

.2.1-/

Dimensionless wall
temperature, t,

S SN U W SN E— 1. 1 1 ( 1 i
01 23 45 0 10 20 30 40 50
Dimensionless position along tube wall, X/D
(3} b

(a) Tube length, L/D=35. (b) Tube length, L/D=50.
FIGURE 7-6. —Tube wall temperatures resulting from combined radiation and convection
for transparent gas flowing in uniformly heated black tube for§=0.02, H=0.8, ¢, =¢g,1

=1.5, and ¢p, 3 =1g,2.
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six parameters: S, H, [, ¢, 1, tr, 2, and ¢, ;. The configuration factors
can be obtained from known disk-to-disk factors by the technique of
example 2-19 and equation (2-57), and they are given in example 3-8.

To solve equations (7—16) and (7-17), it is noted that equation (7-17)
is a first-order linear differential equation, which can be solved in general
form by the use of an integrating factor. The boundary condition is that
‘at x=0, the gas temperature has a specified value ¢, 1. The general
solution is then

ty(x) =Se-5 f : €St (£)dE+ 1, 105 (7-18)

This can be substituted into eauation (7-16) to eliminate ¢t4(x) and yield
the following integral equatic. for the desired variation in tube wall
temperature:

t4 + He, — HSe-5* f Yr,(&)de—He,, -5+
¢

(-4
x - !
=1+ [ O uatc—O+ [ @ ur-aele—2)
+¢4 Far_1(x) + 18 Far2(l—2x) (7-19)

Solutions to equation (7-19) have been obtained by Perlmutter and
Siegel (ref. 20), and some representative results, as calculated by
numerical integration, are shown in figure 7-6. Note that the predicted
temperatures for combined radiation-convection fall below the tempera-
tures predicted for either convection or radiation acting independently.
For a short tube, the radiation effects are significant over the entire tube
length, and for the parameters shown, the combined mode temperature
distribution is similar to that for radiation alone. For a long tube, how-
ever, the combined mode distribution is very close to that for convection
alone over the central portion of the tube. The heat transfer resulting
from combined convection-radiation is more efficient than by either
mode alone. This means that the wall temperature distribution predicted
in the combined problem will always lie below both of the distributions
predicted by using either mode alone.

EXAMPLE 7-6: If the tube in example 7-5 had a diffuse-gray interior
surface, rather than being black, what would be the governing energy
equations?

Using the net radiation method, a heat balance on an area element
at X gives
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3w(X) +@i(X) =g (X) +A[Tu(X) —T,(X) ] (7-20)

where ¢ and g, are the incoming and outgoing radiation fluxes. For
the outgoing radiation flux, there can be written

go(X) =eoT4H(X) + (1 —€) qi(X) (7-21)

Equations (7-20) and (7-21) are combined to eliminate g; with the follow-
ing result:

20 = S (L0 =Ty 1~ el +aTe(X) (722

The analysis leading to equation (7—14) applies for the gray case if the
radiation leaving the surface oT% is replaced by go. This gives

L

B{To(X) = To(X)] +qo(X) = qu+ f au(E)dFar-ax(1X— )

+0T} \Fax-1(X) + 0T} ;Fax-2(L -X) (7-23)

Equation (7-15) is unchanged by having the wall gray. Thus equations
(7-22), (7-23), and (7-15) comprise a set of three equations in the
unknowns: T(X), g.(X), and T,(X). Some numerical solutions for this
system of equations are given in reference 21.

7.5 RADIATION COMBINED WITH BOTH CONDUCTION AND CONVECTION

The basic elements of the derivations in sections 7.3 and 7.4 can
be combined when both conduction and convection are present in a
radiating system. The energy equations become more complicated as
they now contain both temperature differences arising from convection
and temperature derivatives arising from conduction. There are also a
greater number of independent parameters. These will arise from such
things as the convective heat transfer coefficients, thermal conductivity
of the body, and body dimensions: In other words, the quantities that
govern both convection and conduction. As a result of these complexities,
there are no “classical” solutions or solution methods, and results must
usually be obtained using numerical techniques.

The basic ideas involved will now be given by discussing a few specific
problems. Additional information and results are given in references
24 to 30.
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EXAMPLE 7-T7: Consider again the tube in example 7-5. The tube is
uniformly heated, perfectly insulated on the outside, and has a black
interior surface. Gas flows through the tube, and the convective heat
transfer coefficient A is assumed constant. The axial heat conduction
within the tube wall will now be included. The tube wall has thermal
conductivity ki, its thickness is b, the tube inside diameter is D;, and the
outside diameter is D,. The desired result is the temperature distribution
along the tube length. The tube wall is assumed sufficiently thin so that
the temperature at each axial position is constant across the wall
thickness.

The energy balance as given by equation (7-14) must be modified
to include axial wall conduction. The heat conduction into an elemental
length of the tube wall is

(D5 —D}) dTw(X)
4 dX

Qc. = ko

while that conducted out of the element is

ko w(D3—D}) [dTw(X)+d’Tw(X)

Qe.o== 2 X X dX]

The net gain of the energy by the element from conduction is then

(D:—-D}) &Tw(X)
ko ==7 . X

This term is divided by the internal area of the ring wD; dX and is then '
added to the right side of equation (7-14) to obtain the energy balance

(D5 —D}) &Tw(X)

h[Tw(X) —To(X) ] +oTH(X) = qu+ ke == 5 X

L
+ 0ch‘,,,(E)d)"mr—ds(IX—EI)+¢:J'T‘,'.,,F'ax-:(X)-i-O'T‘ﬁ,21"'aur--z(l-‘-X)

(7-24)
As in connection with equation (7-16), all lengths are nondimensionalized

by dividing by the internal tube diameter, and dimensionless parameters
are introduced. The conduction term yields a new parameter

ik )1 ()"
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For thin walls where (D,—D;)/2=15b < 1, this reduces to

V=g (5)

which is the parameter used in some of the references.
The dimensionless form of the energy equation is

&Lty T
() + Hlto(2) —to(0] =1+ N T2t [* () dFar-aclx—)
§=0
l
[} A a0+, Farn () 4 sFaral=2) (129
The energy equation for the fluid within the tube element remains
d
05) Sty () 1)) (-26)

as in equation (7-17). These equations may be further combined as in
equation (7-19).
Hottel (ref. 24) has discussed this problem in terms of slightly dif-

ferent parameters. He obtained a numerical solution before the common

Computed combined results
~— —— —— Conduction and convection only
317 ———— Curve fit through combined results

——

Lo

M: // A.\__
\

2.3"/

27 ' L ' ’ 1
0 1 2 3 4 5
Dimensionless position along tube wall, x = X/D;

Dimensionless wall temperature, tw(xmg. 1

FIGURE 7-7. — Wall temperature distribution for flow of transparent fluid through black tube
with combined radiation, convection, and conduction for {=5, §=0.005, ¥=0.316.
H=1.58, t, 1=1ty,1=0.316, and t, :=ty,2.
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utilization of high-speed computers. For one set of parameters and for
five ring-area intervals on the tube wall, the solution required 10 hours
of hand computation. This illustrates the complexities arising in such
problems. The results are shown in figure 7-7 in terms of the parameters
derived here.

Two additional factors that enter this problem are the conduction
boundary conditions. The solution of equation (7-25) requires two
boundary conditions because of the arbitrary constants introduced by
integrating the d?t,/dx* term. These boundary conditions depend on
the physical construction at the ends of the tube which determine the
amount of conduction present. In reference 25, some detailed results
were obtained. It was assumed, for simplicity, that the end edges of the
tube were insulated, that is,

dX |x=0 dX |x=c

The extension was also made in reference 25 to let the convective heat
transfer coefficient vary with position along the tube. This would account
for the variation of A in the thermal entrance region.

EXAMPLE 7—-8: As a second type of problem including combined
conduction, convection, and radiation, consider a fin as shown in figure
7-8. A gas at T. is flowing over the fin and removing heat by convection.

\
Q:

FIGURE 7-8.—Fin of constant cross-sectional area transferring energy by radiation and
convection. (Flowing gas and environment at T,.)

The environment to which the fin radiates is assumed to be at T, also.
The cross section of the fin has area 4 and perimeter P.
An energy balance on an element of length dX yields

M%dX=GG(T4—Tg)P‘dX+hP dX(T—T.) (7-27)
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The term on the left is the net conduction into the element. The terms
on the right are the radiative and convective losses. The radiative
exchange between the fin and its base is being neglected. This equation
is to be solved for T as a function of X. Multiply equation (7-27) by
[1/(kA dX)}dT/dX to obtain

ET AT _coP pu_ gy T, BP
ax kT e

This can be integrated once to obtain

L (T _eoP (T°_ 0\ P (T*_
5(%_,“(5 TT:)+M(2 rr,)+c (7-28)

where C is a constant of integration.

As a simplified example, let T, = 0 and let the fin be very long. Then for
large X, T(X) = 0 and dT/dX — 0, and from equation (7-28), the constant
C=0. Then solving for dT/dX results in

T-1) &

X \5kd " Tk

1/2
g (2 Peo hP T’) (1-29)

The minus sign has been used when taking the square root since T
decreases as X increases. The variables in equation (7-29) can be
separated and the equation integrated with the condition that T(X) =T,
at X=0,

X T T
= j
2P hP\12
f : T (252 4+
Integration yields

1/2 — V2 vz — M2
x=§M-m [ln (CT3+ M)\ —M (CT*+M)*—M ]

(CT3+ M) 2+ M2 —in (CT3+ M)z + M2 (7-30)
where G=(2/5)(Pec/kAd) and M=hP/kA. Hence, for this simplified
case, a closed-form analytical solution for the temperature distribution
is obtained.

A detailed treatment of this type of fin problem with both convection
and radiation from the surface is given in references 31 to 33.
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7.6 COMPUTER PROGRAMS FOR MULTIMODE ENERGY TRANSFER

Except in simple geometries, the solution of problems involving
radiation transfer plus energy transfer by other modes becomes exceed-
ingly difficult. Examination of the examples will show that, for this
reason, only fairly simple cases have been solved here. Because of the
mathematical difficulties involved, a number of generalized finite-
difference computer programs have been developed for multimode prob-
lems, and some of these are outlined in references 34 to 40. Such
programs allow “cookbook” solution of problems that fall within their
limitations. Each program referenced allows consideration of combined
conduction, radiation, and convection, and most of the programs also
allow inclusion of the effects of internal energy generation, flow, tran-
sients, variable properties, mass transfer, changes of state, heat capacity
in the media considered, and three-dimensional geometries. The refer-
enced programs are all written in one of the Fortran languages, and each
uses an electrical network analog as a method of formulating the mathe-
matics and determining values of the input parameters. Though impres-
sive in their generality, these programs are limited by the common
assumption of diffuse-gray surfaces, and each has its individual peculi-
arities and limitations. Whether the researcher cares to take the time to
learn the unusual characteristics of a given general program and adapt
his particular problem to its limitations, or instead write a specific pro-
gram of his own, is a matter for each person to decide.

7.7 CONCLUDING REMARKS

The treatment of multimode energy transfer problems involving
radiant transfer through transparent media has been examined. Con-
ceptually, the treatment of such problems involves only the careful
construction of energy balance equations over finite areas or on discrete
elements. The chief difficulty then becomes the mathematical treatment
of these energy balance equations. _

Many mathematical methods have been applied with some success
to these multimode problems. When a problem of this type is encoun-
tered, the techniques that have been successful for similar problems in
the literature should be examined. These range from brute force finite-
difference formulations through quite sophisticaied analytical treatments.
The reference list at the end of this chapter gives representative problems
and solution techniques along with some expositions of specific mathe-
matical techniques.

323-003 O-69—17
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Appendix A
Diffuse Configuration Factors

This appendix contains tables of references to over 150 configuration
factors that are available in the literature. The table is composed of
three parts. Part (a) is for configuration factors between two elemental

. surfaces, part (b) gives references for factors between an elemental and
a finite surface, and part (c) is for factors between two finite areas.
More than one reference is given for some factors, and in certain cases,

. the reference in which a factor was originally derived is not given
because of the difficulty in obtaining such earlier works.

The factors are arranged in the following manner: Factors involving
only plane surfaces are given first, followed by these involving cylindrical
bodies, conical bodies, spherical bodies, and more complex bodies.
Within each such category, progression is made from simpler to more
complex geometries.
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TABLE A-I.—TABLE OF REFERENCES FOR CONFIGURATION FACTORS
(a) Factors for two differential elements
Configu- Geometry Configuration Source
ration
number

A-1 | Two elemental areas in % B (2-8)
arbitrary configuration @

A-2 Two elemental areas lying Example 2-3
on parallel generating /®/
lines

A-3 Elemental area to infinitely Example 2-4
long strip of differential and ref. 1
width lying on paraliel
generating line

A-4 Infinitely long strip of Example 2-4
ditferential width to simi- and ref. 1
lar strip on paratlel gen-
erating line

A-S Strip of finite length and Ref. 2
ditferential width to strip
of same length on paraliel
generating line
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TaBLE A-1.—TABLE OF REFERENCES FOR CONFIGURATION FACTORS— Continued
(a) Factors for two differential elements ~ Continued

Configu- Geometry Configuration Source
ration
number
A-6 Corner element of end of Examgle 2-19
squars channel to sectional
wall element on channel
A-7 Exterior element on tube Ref. 3
surface to exterior element
on adjacent parallel tube of
same diameter
A-8 Exterior element on parti- Ref, 3
tioned tube to similar ele-
ment on adjacent parailel
tube of same diameter
A-9 Two ring elements on inte- Refs. 4,5
rior of right circular
cylinder
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TABLE A-l.—TABLE OF REFERENCES FOR CONFIGURATION FacTtors — Continued
(a) Factors for two differential elements — Continued

Configu- Geometry Configuration Source
ration
number
A-10 8and of differential length Retf. &
on inside of cylinder to differ-
ential ring on cylinder base
A-11 Ring eiement on fn to ring Ref. 7
element on adjacent tin
A-12 | Two elements on interior of Refs. 8 9
right circular cone




TABLE A-I.—TABLE OF REFERENCES FOR CONFIGURATION FacToRs — Continued

APPENDIX

(a) Factors for two differential elements ~Concluded

Configu- Geometry Configuration Source
ration
number
A-13 Two differential elements Refs. 1, 5,
on interior of spherical %11
cavity
A-14 Band on outside of sphere to Ref. 12
band on another sphere of
same radius
A-15 | Twodifferential elements Ref. 13
on exterior of toroid
A-16 | Element on exterior of Ref. 13
toroid to ring element an
exterior of toroid
A-17 Element on exterlor of Ref. 13
toroid to hoop element on
exterior of toroid
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TaBLE A-l.—TABLE OF REFERENCES FOR CONFIGURATION FACTORS — Continued
(b) Factors for exchange between differential element and finite area

Contigu- Geometry Configuration Source
ration
number

B-1 Plane element to plane extending o Refs. 14-16
to Infinity and intersecting plane
of element at angle ¢

¢
=\ T

B-2 Plane strip element of any length Example 2-7
to plane of finite width and Infinite
length

¢

B-3 Plane element to infinitely long Refs. 14-18
surface of arbitrary shape gener-
atad by line moving paratiei to
itself and plane of element

B-4 Strip element of finite length to Refs. 5, 14-16
rectangle in plane parailel to
strip; strip is opposite to ane
edge of rectangle |

|
|




APPENDIX 249

TaABLE A-I.—TABLE OF REFERENCES FOR CONFICURATION FACTORs — Continued
(b) Factors for exchange between differential element and finite area—Continued

Configu- Geometry Configuration Saurce
ration
number
B-5 Strip element of finite length Refs. 5 (for
to plane rectangle that inter- & «90° only),
cepts plane of strip at angle ¢ 14-16
and with one edge parallel to _———
strip
¢
-
B-6 Plane element to plane rec- Refs. 1, 5,
tangle; normal to element 14-17,
passes through corner of 192

rectangle; surfaces are on 1

paraltel planes W

B-7 Area element to any W Ret. 1
paraliel rectangle

a7
8-8 Plane element to plane rec- Refs. 1, 5
tangle; planes containing two tfor & = 90°
surfaces intersect at angle & == only), 14-16
/
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TABLE A-1.—TABLE OF REFERENCES FOR CONFIGURATION FacToRrs — Continued
(b) Factors for exchange between differential element and finite area— Continued

Configu- Geometry Configuration Source
ration

8-9 Plane element to right triangle 1 mﬂﬂﬁ

| Example 2-17
In plane parallel to plane of ele- | [
ment; normal to element passes } !
through vertex of triangle ﬁ::: - ‘17}
-~V
8-10 Plane element to plane area Refs. 14-16
with added triangular are;
element is on corner of rec- 8
tangle with one side in common
with plane area at angle & -_— —/7
7/
A 74
8
8-11 Same geometry as preceding Refs. 14-16
with triangle reversed refative
to plane slement —_————
/

B-12 Plane element to circular disk Refs. 1, 5,
on plane parallel to that of 14-16
slement
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TABLE A-I.—TABLE OF REFERENCES FOR CONFIGURATION FacToRs — Continued
(b) Factors for exchange between differential element and finite area—Continued

Configu- Geometry Configuration Source
ration

number

8-13 Plane eiement to segment of - | Ret, 5

disk in plane parallel to element

B-14 | Plane element to circular disk; Refs, 5,
planes containing element and 14-16, 18,
disk intersect at 90°, and cen- 21 and
ters of element and disk fie in example 2-6
plane perpendicular to those
containing areas

B-15 Strip slement of finite length to Refs. 18, 21
perpendicular circular disk lo-
cated at one end of strip

8-16 | Plane element to ring area in

Example 29
plane perpendicular to element .
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TABLE A-1.—TABLE OF REFERENCES FOR CONFIGURATION FACTORS — Continued
{b) Factors for exchange between differential element and finite area— Continued

Configu- Geometry Configuration Source
ratlon
number

B-17 Radial and wedge elements on Refs, 19, 21
circle to disk in paraliel plane

8-18 Area element to parallel ellip- Ref, 17
tical plate @

I
]

B-19 | Plane element to right circular Refs. 5,
cylinder of fnite length; normal 14-16
to element passes through center
of one end of cylinder and s per-
pendicular to cylinder axis

B-2 Element is at end of wall on in- Refs. 1416
side of finite iength cylinder en- 18 &
closing concentric cylinder of
same length; factor [s from efe~
ment to inside surface of outer
cylinder
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TABLE A-1. —TABLE OF REFERENCES FOR CONFIGURATION FACTORs —Continued
{b) Factors for exchange between differential element and finite area— Continued

Contigu- Geometry Configuration Source
ration
number
B-21 Elemental strip of finite length to Refs. 14-16,
parallel cylinder of same length; 18 a
through cylinder axis !

normals at ends of strip pass ’ '
i
[}

B-22 | Strip or element on plane parallel Refs. 18 21
to cylinder axis to cylinder of fi-

nite length e’

B-B Infinitety long strip of differen- Ret. 2
tal width to paralliel semicytinder
8-24 | Infiniw strip on any side of any Ref. 2

of three fins to tube or environ-
ment, and infinite strip on tube
to fin or environment




254 THERMAL RADIATION HEAT TRANSFER

TaBLE A-l.—TABLE OF REFERENCES FOR CONFIGURATION FacToRrs — Continued
(b) Factors for exchange between differential element and finite area — Continued

Configu- Geometry Configuration Source
ration
number
8-3 Element and strip element on Refs. 18, 21
interior of finite cylinder to
Interior of cylindrical surface
B-26 Elemental strip on inner sur- Refs. 14-16,
face of outer concentric cylinder 18 2
to surface of outer concentric
cylinder
|
|
B-Z7  |Elemental strip on inner sur- Refs. 14-16,
face of outer concentric cylinder 18 2
{0 either annular end
B-2 Element on inside of outer finite Refs, 18, 21
concentric cylinder to inside
cylinder or annular end
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TABLE A-I.~TABLE OF REFERENCES FOR CONFIGURATION FACTORS — Continued
(b) Factors for exchange between differential element and finite area — Continued

Configu- Geometry Configuration Source
ration
number
B-29 Strip element on exterior of Refs, 18, 21
inner finite length concentric
cylinder to inside of outer
cylinder or to annular end
B-30 Strip on plane inside cylinder Refs. 18, 2
of finite length to inside of
cylinder
8-31 Area element on interior of . Refs. 18, 21
cylinder to base of second con-
centric cylinder; cylinders are
one atop other
A
B-32 | Ring element on fin to tube Ref. 7

323-003 O-69—18
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TaBLE A-l.—TABLE OF REFERENCES FOR CONFIGURATION FacTors — Continued
(b) Factors for exchange between differential element and finite area—Continued

Configu- Geometry Configuration Source
ration
number

B-33 Ring element on interior of Ref, 4
right circular cylinder to

end of cyiinder

B-M | Exterior element on tube ' -1 Ret. 3
surface to finite area on 4

adjacent parailel tube of /
same diameter ‘

8-35 | Exterior element on tube
surface of partitioned tube
to finite area on adjacent
paraiiel tube of same
dlameter

B-36 | Element on wall of right Ref. 24
circular cone o base of
cone
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TABLE A-l. —TABLE OF REFERENCES FOR CONFIGURATION FACTORS— Continued
(b) Factors for exchange between differential element and finite area— Continued

Configu- Geometry Configuration Source
ration
number

8-37 Any Infinitesimal element on Ref. 1 and
interior of sphere to any finite % section
eiement on interior of same / a 3425
sphere @

B-38 | Spherical point source to rec- Refs. 1,
tangle. Point source is on one & 14-16
corner of rectangle that inter- ~y
sects with receiving rectangie at s
angle ¢ - d

~ \@,/
B-39 | Areaelement to sphere @- - Refs. 15,
-

8-40 | Area element to axisymmetric @ Ref. 28
surface - paraboiold, cone,
cylinder (formulation given -
factors are not eval uated)
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TaBLE A-I.—TABLE OF REFERENCES FOR CONFIGURATION FACTORS — Continued
(b) Factors for exchange between differential element and finite area—Concluded

Confiqu- Geometry Configuration | Source
ration
number
8-41 | Element on interfor for ex- Refs. 429, 130
terior) of any axisymmetric
body of revolution to band
of finite length on interior
{or exterion
~
B-42 | Element on exterior of \\\ Ref. 13
toroid to toroidal segment -
of tinite width
B-43 | Element on exterior of Ret. 13
toroid to toroidal band of
tinite width
B-44 Element and ring element Ref. 13
on exterior of toroid to en-
tire exterior of toroid
8-45 | Slender torus to point on D Ref. 17
perpendicular axis i
1
1

axernel of integrals and limits are formulated in terms of appropriate variables, but integrations
are not carried out explicitly.



TABLE A-l. —TABLE OF REFERENCES FOR CONFIGURATION FACTORS — Continued

APPENDIX

(c) Factors for two finite areas

Confiqu-
ration
number

Geometry

Configuration

Source

c-1

Two Infinitely iong plates of
equal finite width W and one
common edge of Included
angle $

G

el

Example 2-8

Two Infinitely long plates of
unequal width with one com-
mon edge and [ncluded angle
& -9°

L

Ret, 15

Finite rectangle to Infinitely
long rectangle of same width
and with one common edge

Ref. 31

c4

Two finite rectangies of same
width with common edge and
included angle ¢

Refs, 1, 19, 20 ifor
$ = 90° only), S,
14-16, 18, 31

c5

Two rectangles with common
edge and Included angie &

i
&
4

Ref, 15

C$

Two rectangles with one side
of each paraliet, and with one
corner touching; planes con-
taining rectangles intersect at
angle ¢

Ret. 15

bres. 31 indicates that tabulated values for this case are incorrect in ail other references.
Corrected vaiues are listed in ref. 31
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TABLE A-l.—TABLE OF REFERENCES FOR CONFIGURATION Facrors —Continued
(c) Factors for two finite areas — Continued

Conflgu- Geometry Configuration Source
ration
number
c7 Two rectangles of same width Ret. 5 ifor
with one paraltei edge; planes & - 90° only), 15
containing rectangles inter-
sect at angle &
P
C-8 | Two rectangles with one VA% i | Refs. 14, 15, 18
parailel ecge; planes contain- =
ing rectangles intersect at il
angle ¢ L% 57
1
v
cH Two infinitely long directly Refs. 15, 19
opposed parallel strips of
same finite width
C-10 | Paratiei, directly opposed W Refs. 1, 5, 14-16,
rectangles of same width o ! 19, @, 32

and length 1

(]

C-11 | Two rectangles in paraitel W Refs. 15, 17, 32
|
1
)

planes with one rectangle
directly opposite portion of
other

Refs. 14, 15, 18,
32

C-12 Two rectangles of arbitrary
size in parallel planes; all
sides lie parallel to x and
y axes
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TABLE A~l.—TABLE OF REFERENCES FOR CONFIGURATION FACTORS — Continued
(c) Factors for two finite areas— Continued

Confiqu- Geometry Configuration Source
ration

number
C-13 | Rectangle to arbitrarily Ref. €33

orfented rectangle of arbi- W
trary size

C-14 | Two Nat plates of arbitrary Ref. 334
shape and arbitrary orienta-
tion

Ret. 18

c-15 Finite areas on interior of
square channe!

C-16 | Factor between bases of right
convex prism of reqular tri-
anguiar, square, pentagonal,
hexagonal, or octagonal
cross saction

Ref. 31

C-17 | Factors between various sides, Ref. 31
and sides and bases of reqular
hexagonal prism I ahuls N

Cc-13 Circular disk to arbitrarily E Ref. 35

placed rectangle in parallel b b4
plane {using configuration pd 4
factor algebra with configu- Ve

ration number C-21} L~

3Kernel of Integrals and Himits are formulated in terms of appropriate variables, but
Integrations are not carried out explicitly,
CAvailable as general computer program only,
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TABLE A-l.—TABLE OF REFERENCES FOR CONFIGURATION FacToRs — Continued
{c) Factors for two finite areas — Continued

Configu- Geometry Conflguration Source
ration
number
C-19 | Circle to arbitrarily placed -2 Ref. 35
rectangle in plane parallel to -,
normal to circle (using con~ L 7
tiquration factor algebra with 1 |
configuration number C-21} e

rectangle or disk of arbitrary
size

C-20 | Disk to arbitrarily oriented /W Ret. ¢33

™~

C-21 | Clrcular disk to paraliel right
triangle; normal from center
of circle passes through one

acute vertex

Ref, 35

c-2 Paraile!l, directly opposed Refs. 1,5, 9,

1
]
plane circular disks @ 14-16, 18,
19,21

c-B3 Directly opposed ring and
disk of arbitrary radii

Refs. 15, 21

Cavailable as general computer program only.
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TaBLE A-l. —TABLE OoF REFERENCES FOR CONFIGURATION FACTORS — Continued
(c) Factors for two finite areas — Continued

Configu- Geometry Configuration Source
ration
number

Refs. 14, 21 and
example 2-10

c-24 Parallel, directly opposed
plane ring areas

c-5 Entirs inner wall of finite Refs. 36, 37

cylinder to ends

C-2 | Internal surface of cylindrical Refs. 15ifig.
6-14, 38

cavity to cavity opening

c-a Inner surface of cylinder to . Refs. 21, 37

annulus on one end

C-28 | Inner surface of cylinder to Refs. 21, 37
disk at cne end of cylinder

7 Refs. 19, 21, 37

c-3 Portion of inner surface of
cylinder to remainder of inner
surface 7

»'

'\Y.
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TABLE A-l.—TABLE OF REFERENCES FOR CONFIGURATION Factons — Continued
(c) Factors for two finite areas— Continued

Configu- Geometry Configuration Source
ration
number

C-30 | Finite ring areas on interior Refs, 18, 19, 37|
of right circular cylinders
to separate similar areas

and to ends

c-3l Finite areas on interior of Ref, 18

right circular cylinder

c-32 Infinitely long cylinder to O Refs. 14-16

infinite plane; axis of

cylinder parailel to plane i
€-33 | Infinite cylinder to parallet Refs. 5. 14, 15
infinitely long plane of
finite width '
-
¢34 | Infinitely long plane of «” Ref. 21
finite width to infinitely
long cylinder >
.‘ Cd
C-35 Infinite plane to first, second, OOOOOOOOO Refs. 1, 19, 2
and first plus sacond rows of
infinitely long parailel tubes —

of equal diameter

3¢ rronsously given in zrereronceé. With the notation of ret, 5, shouid be
gy (a1 -unlg)
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TABLE A-l. —TABLE OF REFERENCES FOR CONFIGURATION FACTORS — Continued

(c) Factors for two finite areas—Continued

Configu-
ration
number

Geometry

Configuration

Source

C-3%

Finite length cylinder to
rectangle with one edge
parallel to cylinder axis and
of length equal to cylinder

Ref. 5

c-3

Finite cylinder to finite
rectangle of same length

Ref. 39

Cylinder to any rectangle in
plane perpendicular to cylin-
der axis (using configuration
factor algedra with configura-
tion number C-42

Ret. 35

Cylinder to any rectangle in
plane paraltel to cyiinder axis
(using configuration factor
aigebra with configuration
number C~42

Ref. 35

cx

Finite area on exterior of
cylinder to finite area on
plane parallel to cylinder axis

Ref. 18
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TaBLE A-I.—TABLE OF REFERENCES FOR CONFIGURATION FacToRs — Continued
(c) Factors for two finite areas — Continued

Configu- Geometry Configuration Source
ration
number
c4l Finite area on exterior of Ref. 18
cylinder to finite area on (=r--- 7
skewed plane ; /' i
I§
— -_— ,i
v
»

C-42 | Outside surface of cylinder to Ref. 35
perpendicular right triangie;

triangle is in plane of cylinder
base with one vertex of triangle

at center of base

C~43 | Cylinder and plane of equal Refs, 18, 21
length parallel to cylinder
axis plane inside cylinder;
all factors between plane and

inner surface of cylinder

ZA
\/

C-4 | tnner surface of cylinder to Refs, 18, 21

disk of same radius

C~5 Interior surface of circular Example 2-11
cylinder of radius R to disk of
radius r where r<R; diskis
perpendicular to axis of cylinder,
and axis passes through center
of disk (using contiguration
factor algebra with configuration
number C-22

o0 |00
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TABLE A-l. —TABLE OF REFERENCES FOR CONFIGURATION FACTORS — Continued
(c) Factors for two finite areas —Continued

Configu- Geometry Configuration Source
ration
number
C<46 | Annular ring to similar Refs, 7, 18, 21
annular ring each at end
of cylinder

c-47 Factors for Interchange be- Ref, 7
tween fins and tube {(given in
algebraic form, untabulated

C-48 | Finits area on exterior of Ref, 18

cylinder to finite area on
exterior of parailel cylinder

C-® | Cylinder of arbitrary length o Ref, €33
and radius to rectangle, disk,
or cylinder of arbitrary size ‘ \

and orientation \

o
C-50 | Cylinder and plate with Ref, 334
arbitrary orientation

c-51 Concentric cylinders of infl- Ref. 14
nite length; inner to outer

cylinder; outer to inner

cylinder; outar cylinder to

itself

3Kernel of integrals and limits are formulated in terms of appropriate variables, but
integrations are not carried out explicitly.
CAvailable as general computer program only.
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TaBLE A-I.—TABLE OF REFERENCES FOR CONFIGURATION FacToRs — Continued
(c) Factors for two finite areas— Continued

THERMAL RADIATION HEAT TRANSFER

Configu-
ration
number

Geometry

Configuration

Source

C-52

inside surface of outer con-
centric cylinder of finite
length to inner cylinder of
same length

Refs. 5, 14, 19,
2.4

cH

Inside surface of outer con-
centric cylinder to itselt

Refs. 5, 7, 14,
21, &

Cc-54

Inside surfacs of outer con-
centric cylinder to either end
of annulus

Refs. 5, 14,
2, 40

C-55

Concentric cylinders of
ditferent finite lengths -
portion of inner cylinder
to entire outer cylinder

Ref. 21

C-5

Concentric cylinders of
difterent finite lengths -
portion of inside of outer
to outside of entlre inner
cylinder

Refs. 18, 21, 34

c-51

Parallel cylinders of differ~
ent radii and length - any
portions of outer curved
surfaces

Ref, 334

3ernel of integrals and limits are formulated in terms of appropriate variables, but

integrations are not carried out explicitly.
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TABLE A-l.—TABLE OF REFERENCES FOR CONFIGURATION FACTORs— Continued
(c) Factors for two finite areas —Continued

Configu- Geometry Configuration Source
ration

number
C-58 | Concentric cylinders of dif- Refs. 18, 21

ferent radil, one atop other;
factors between inside of upper
cylinder and Inside or base of

lower cylinder
c-5% Infinitely long parallel semi- Example 2-16
cylinders of same diameter . and ref. 5

C-60 | Finite area on exterior of
inner cylinder te finite area
on Interior of concentric
outer cylinder

Ref. 18

0

c-l Two tubes connected with fin
of finite thickness; length can
be finite or Infinite; all factors
betwesn fInite surfaces formu-|
lated in terms of integrations
between differential strips

Rel. 2

A
&

@,

C-62 | Two tubes connected with
tapered fins of finite thick-
ness; length can be finite or
infinite; all factors between
finite surfaces formulated in
terms of integrations between
difterential strips

Ref. 2

$
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TaBLE A-I.—TABLE OF REFERENCES FOR CONFIGURATION Factors —Continued
(¢) Factors for two finite areas — Continued

Configqu- Geometry Configuration Source
ration

number
C-63 Sandwich tube and fin struc- Ref. 2

ture of infinite or finite
length; all factors between fi-
nite surfaces formulated in
terms of integrations between
differential strips

C-64 | Concentric cylinders con- Ref. 2
nected by fin of finite thick-
ness; length finite or infinite;
all factors between finite sur-
faces formuiated in terms of
integrations between differen-
tial strips

C-65 | Exterior of infinitely long Example 2-22
cylinder to Interior of con-

centric semicylinder

C-66 tnterior of infinitely long Example 2-22
semicylinder 1 to interior of
semicylinder 2 when concen-
tric parailel cylinder 3 is

prasent

c-67 Between axisymmetrical sec- Refs, 18, 37

tions of right circular cane
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TaBLE A-I. —TABLE OF REFERENCES FOR CONFIGURATION FACTORS — Continued

(¢) Factors for two finite areas —Continued

Configu- Geometry Configuration Source
ration
number

Cc-68 Between axisymmetrical sec- Refs. 19, 37
tions of right circular cone
and base or ring or disk on
base

c® Internal surface of conical Rets. 15
cavity to cavity opening (fig. 6-14),

37,38

C-70 | Entire inner surface of Refs. 36, 37
frustum of cone to ends

C-71 | Right circular cone of arbi- — % Ref. €33
trary size to rectangle, disk,
cylinder, or cone of arbitrary ‘\@
size and orientation ‘ \

C-72 | Cone to arbitrarily skewed Ref. 338
plate

c-ni3 Internal surface of spherical Refs. 15
cavity to cavity opening (fig. 6-14), 38

3Karnel of integrals and limits are formulated in terms of appropriate variables, but integra-
tions are not carried out explicitly.

CAvailable as general computer program only.

323-003 O-69—19
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TaBLE A-l.—TABLE OF REFERENCES FOR CONFIGURATION FACTORS — Continued
{c) Factors for two finite areas — Continued

Configu- Geometry Configuration Source
ration
number
C-74 | Any finite area on interior Section 3.4.2.5
of sphere to any other finite andref. 1
area on Interior
C-75 | Finite sphere to rectangle Ref, 35
1
——
7
C-76 | Sphere to arbitrary rectangle £ Refs. €33, 35
(using configuration factor
algebra and configuration
number C-75)
C-T1 | Sphere of arbitrary diameter % Ref. €33
to disk or cone of arbitrary Ny
size and orientation yf
C-78 | Sphere to arbitrarily skewed Ref. 334
plate
c-n Sphere to cylinder O Refs, ©33, 41

3xernet of integrals and limits are formylated in terms of appropriate variables, but integra-
tions are not carried out explicitly.
Cavailable as general computer program only.




TaABLE A-I. —TABLE OF REFERENCES FOR CONFIGURATION FACTORS — Continued
(c) Factors for two finite areas— Continued

APPENDIX

Configu- Geometry Configuration Source
ration
number

C-80 | Cone to sphere having same Refs. 12, ©33
diameter as base of cone;
axis of cone passes through
center of sphere

c-8l1 Concentric spheres; inner to Refs, 14, 15, and|
outer sphere; outer to inner example 2-13
sphere; auter sphere to itselt

-

C-82 | Area on surface of sphere to . (f:- - Ref. 18
rectangie in plane perpendic- \
ular to axis of sphere

C-43 | Sphere to sphere Refs. 12, 33,

41, 42 (equai
spheres)

c-82 internal surface of hemi- Refs. 15
spherical cavity to cavity (fig. 6-14,
opening 37,38

C-85 | Between axisymmetrical Ref. 37
section of hemisphere and
base or ring or disk on base

CaAvailable as general computer program only.
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TaBLE A-L —TABLE OF REFERENCES FOR CONFIGURATION FacTomrs—Continued
(c) Factors for two finite areas—Continued

Configu- Geometry Configuration Source
ration

number
c-8 Between axisymmetrical sec- Refs. 18, 37

tions of hemisphere

C-87 | Sphere to hemisphere Q ® Rel, 41
C-88 | Sphere to ellipsoid Q & Refs. €33, 41

c-99 | Enipsoid of arbitrary major § S Ref. ©33
and minor axes t rectangle, f / @
/

disk, cylinder, cone, or

ellipsoid of arbitrary size
and orlentation & - y

€90 | From Moebius strip to itselt S Rel, 8

c-91 Segment of finite width on Ref, 13
toroid to exterior of toroid
c-92 Toroidal band of finite Ref, 13

width to exterior of toroid

CAvailable as general computer program only.
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TABLE A-l.—TABLE OF REFERENCES FOR CONFIGURATION FacTtoRs — Concluded
(¢} Factors for two finite areas— Concluded

Configu- Geometry Configuration Source
ration
number

c-9 Exterior of toroid to itself Ref. 13

C-94 | Toroid of arbitrary size to Ret. €33
rectangte, disk, cylinder, w
sphere, cone, elfipsoid, or
torold of arbitrary size and W
orientation /

—O0

C-95 | Arbitrary polynom!al of reve- Ref, €33
lution to rectangle, disk, %
cylinder, sphere, cone,
eitipsoid, toroid, or cther / &
arbitrary polynomial of- /
revolution of arbitrary size - O
and orientation (polynomials
of fifth order or less) \"‘ — O

C-96 | Generzl plane polygan to any Ref. 44
general plane poiygon or two
or more intersecting or ad- %
joining polygons.

CAvailable as general computer program only.
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Appendix B
Enclosure Analysis Method of Gebhart

In chapter’3 the radiative exchange within a diffuse-gray enclosure
was analyzed by the method originated by Poljak. A somewhat different
viewpoint has been set forth by Gebhart and will be briefly presented
here. Additional discussion can be found in references 1 to 3. The
special utility in this formulation is that it yields coefficients that pro-
vide the fraction of energy emitted by a surface that is absorbed at
another surface after reaching the absorbing surface by all possible
paths. These coefficients can be of value in formulating some types of
problems. After the derivation, a correspondence between the Gebhart
and Poljak formulations will be indicated.

As in chapter 3, an enclosure having N diffuse-gray surfaces is con-
sidered, and the same restrictions are imposed here as in section 3.1.2.
For a typical surface A the net energy loss is the emission from the
surface minus the energy that is absorbed by the surface from all
incident sources. The emitted energy is AxexoT4 Let Gy be the fraction
of the emission from surface A; that reaches A« and is absorbed. This
includes all the paths for reaching Ay; that is, the direct path, paths by
means of one reflection, and paths by means of multiple reflections.
Thus 4;e;0T}G;x is the amount of energy emitted by A; that is absorbed
by Ax. A heat balance on Ay then gives

Qk = AkEkO’T,: - (AlélO'T?G1k + AzézG‘T;G-gk + - -4+ AjéjO"T;ij
+ -+ Arexa TG+ - -+ + AvevoTiGwx)
N
=Ak€k(7'T[:— 2 AjEjO'T;Cjk (Bl)

J=1

The Gix would generally not be zero since, even for a plane or convex
surface, some of the emission from a surface will be returned to itself
by reflection from other surfaces. Equation (Bl) can be written for each
surface; this will relate each of the ’s to the surface temperatures in
the enclosure. The G factors must now be found.

The quantity Gy is the fraction of energy emitted by 4; that reaches
Ax and is absorbed. The total emitted energy from 4; is A;0T¢. The
portion traveling by a direct path to Ax and then absorbed is A;¢;o T}F-xex,
where for a gray surface, € is equal to the absorptivity. All other radiation
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from A; arriving at A4i will first undergo one reflection. The emission
from A; that arrives at a typical surface 4a and is then reflected is
AjeoTiFj-npn. The fraction Guk then reaches Ax and is absorbed. Then
all the energy absorbed at 4 originating by emission from 4; is

Ao THFj_rex+ (AjgoTiF )i Guc+ AjgoTHF_2p2 G
+ e +A;€;0'T}F —kpxGre+ *+ * - +Aj€j0‘7}‘F j—NpAVGNk)

Dividing this energy by the total emission from 4; gives the fraction

Gu=Fj—xex+ Fj-1p1Grc + Fj2p2Gak
+ - +FxprCret+ - - + Fj_npnGn

By letting j take on all values from 1 to N, the following set of equations
is obtained:

G = F1_xex + F1-101G 1k + F1_2p2Gox
+ v+ FiopiGre+ ¢ - -+ FioxpyGux

G =F;_r€xc+ F2_1pC1n + Fa_2p:G2x
+ e+ Fz-kkakk + -+ Fz-NPNGNk (B2)

Gk = Fy_x€i + Fy-1p1G1ic + Fy_20:Gox
+ -+ + FykprGrx+ - - -+ Fy_xpvGue

Equations (B2) can be solved simultaneously for G, Gox, . . .. Gk
Equation (B1) then relates Qx to the surface temperatures. The k index
in equations (B1) and (B2) can correspond to any of the surfaces in the
enclosure.

At the end of section 3.3.2, it was mentioned that matrix inversion
can be applied to equations (3-19) to yield each Q as a weighted sum of
T+s. The coefficients obtained by the matrix inversion thus correspond
to those in equation (B1). This shows the correspondence between the
method described here and that in chapter 3.

REFERENCES
1. GEBHART, B.: Unified Treatment for Thermal Radiation Transfer Processes —Gray,
Diffuse Radiators and Absorbers. Paper No. 57-A-34, ASME, Dec. 1957.
2. GEBHART, B.: Heat Transfer. McGraw-Hill Book Co., Inc., 1961, pp. 117-122.
3. GEBHART, B.: Surface Temperature Calculations in Radiant Surroundings of Arbitrary
Complexity—for Gray, Diffuse Radiation. Int. J. Heat Mass Transfer, vol. 3, no. 4,
1961, pp. 341-346.



Appendix C

Conversion Factors

Tables of conversion factors between the mks and other common
systems of units are given in tables C-I to C-III of this appendix.

REFERENCE

1. MECHTLY, E. A.: The International System of Units. Physical Constants and Conversion
Factors. NASA SP-7012, 1964.
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282 THERMAL RADIATION HEAT TRANSFER

TABLE C-1I. — CONVERSION FACTORS FOR ENERGY FLUX

cal/(secXcm?) | Beu/(hr)ft?) W/m?

erg/(secXcm?)

1 calf(secXcm®) *= . .......
1 Bru/(ho)(ft2)= ............]

Wimsam .eniinierenines
1 erg/(sec)(cm?) = ..........

7.525 %10~ 1
2.388 x 10-* 0.3174 1
2.388 X 10-% | 3.174x 10-¢ 10-3

3.152

1.329x 104 | 4.187x10* | 4.187x107

3.152x 10°
102
1

* Based on International Steam Table.




Index

Absorption efficiency, 166
Adiabatic surface, 150
Algebra, configuration factor, 30
Approximate separable kernel, 99
Areas of enclosure, 67
Band energy approximation, 156
Black enclosure, 7, 59
Blackbody enclosure, 95
Bundle, energy, 4, 191
Cavity
conical, 206, 207
spherical, 104
wedge, 161
Combined modes, 4, 217, 232
computer programs, 237
Combined radiation-conduction
coupled, 218
uncoupled, 217
Concentric cylinders
diffuse, 114
specular, 112, 114
Concentric spheres
diffuse, 75, 114
specular, 112, 114
Conditional probability distribution, 186
Conduction, 217
Configuration factors, 7, 12
algebra, 30
contour integration, 46
crossed-string method, 43
differential area to differential area, 13
differential to finite area, 19, 47
differentiation, 55
in enclosures, 39
errors, 34
finite area to finite area, 26, 52
Monte Carlo method for, 204
reciprocity, 14, 21, 27, 35, 123
reciprocity, table, 29
specular surfaces, 117
table of references, 241, 244
Conical cavity, 206, 207
Contour integration, 46
Convection, 227

Convergence
in Monte Carlo solutions, 209
in numerical integration, 226

Conversion factors, table, 279
Coupled modes, 218

Crossed-string method, 43

Cumulative distribution function, 184
Curved specular surface, 139

Differential element
configuration factor, 13, 19

Differentiation of configuration factors, 55
Diffuse

enclosures, 67, 90

surfaces, 133
Diffuse configuration factors, table, 241,244
Diffuse-gray

enclosures, 90

surfaces, 67
Diffuse-nongray, 147, 149
Diffuse-spectral surfaces, 149
Directional surfaces, 5, 162
Directional-gray surfaces, 162
Directional-spectral surfaces, 169
Disk, 22, 32
Electromagnetic theory, 151
Enclosure, 1

black, 7, 39, 59

gray-diffuse, 67, 70

ideal, 2

nonideal, 3

radiation exchange, 1, 7

with diffuse spectral surfaces, 149

with specular surfaces, 110

with specular and diffuse surfaces, 129,

144

Enclosure equations, table, 90, 114
Energy balance

diffuse — gray surface, 71

spectral surface, 150
Energy bundle, 191
Energy exchange

between differential areas, 10

between differential and finite area, 21

between finite areas, 29

summary table, 29
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Environment temperature, 92
Errors
configuration factors, 34
Monte Carlo calculations, 188
Exchange factors, 137, 205
Fin, 219, 223, 235
Fin efficiency, 221
Finite area configuration factors, 26, 52
Gebhart’s method, 71, 277
Geometric configuration factor, 13
General computer programs, 237
Gray surfaces, 67
Grooved surfaces
diffuse, 168
specular, 121, 168
directional, 164, 168
Heat flux specified on all surfaces, 89
Herschel, Sir William, 3
Hole, radiation from, 94
Hottel, Hoyt C., 43, 70
crossed-string method, 43
Images, 115
Incoming radiant energy, 71
Insulated surface, 67, 150
Integral equation solution methods
numerical, 97
separable kernel, 99
Taylor series, 103
variational method, 102
Integro-differential equations, 4
Intensity, 9
Interchange, 10
Interference, 5
Kernel, 86
Laplace equation, 181
Lunar radiation, 4, 144
Marginal probability distribution, 186
Markov chain, 180
Matrix inversion, 81
Monte Carlo
confguration factors, 204
directional and spectral surfaces, 191,
208
energy exchange, 191
table of relations, 198
Net radiation method
finite areas, 70
infinitesimal areas, 83
specular and diffuse surfaces, 129
Newton-Raphson method, 226
Nondiffuse surfaces, 162
Nongray surfaces, 153

Nonisothermal surfaces, 84
Nonlinear problems, 218
Nonlinear simultaneous equations, 226
Notation

general, 4

specular configuration factors, 117
Numerical integration, 97
Outgoing radiant energy, 71, 79
Parallel heat transfer modes, 213
Parallel plates

diffuse, 73, 114, 151

directional gray, 162

gray, 73, 95, 114

spectral, 151

specular, 110, 117
Partial view, 119
Prescribed surface heat flux, 89
Prescribed surface temperature, 77, 86
Photon bundle, 191
Poljak, G.

net radiation method, 70, 71
Probability distribution

conditional, 186

cumulative, 184

marginal, 186

normal, 193
Probability density function, 183
Radiosity, 72
Random numbers, 183, 187
Random number generation, 187
Random walk, 180
Ray tracing, 115
Reciprocity

configuration factors, 14, 21, 29

specular exchange, 123, 128
Reflectivity

diffuse, 68

specular, 110, 114
Roughness, 168
Restrictions for enclosure theory, 67
Semigray approximation, 160
Separable kernel, 99
Series heat transfer modes, 213
Solar, 3, 148, 161
Solid angle, 10, 13
Spectrally selective surfaces, 3, 69, 148
Specular and diffuse enclosure, 129
Specular surfaces, 69, 110

configuration factors, 117, 123

curved, 139

exchange factors, 137, 141

radiation between, 117
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Specular tube, 140
Spherical cavity, 104
Standard deviation, 190
Stratified sampling, 190
Strip, 16
Sun, 11
Surfaces
gray, 67, 85, 109
diffuse, 67, 85
nongray, 153
nondiffuse, 162
of enclosure, 67
specular, 109
Tables
configuration factor references, 241, 244
configuration factor relations, 29
conversion factors, 279
energy exchange in simple enclosures,
114
Monte Carlo relations, 198

Taylor series, 103
Temperature of heated radiating tube, 91
Total energy, 149
Transients, 4, 68, 113, 222
Tube
radiating, 91, 140
radiation and convection, 227
radiation, convection, and conduction,
233
specular, 140
Tungsten, 151
Uncoupled modes, 217
Vacuum bottle, 112
Variance, 189
Variational method, 102
Wedge groove, 17, 24, 161
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